Package 'lgcp'

Title: Log-Gaussian Cox Process
Description: Spatial and spatio-temporal modelling of point patterns using the log-Gaussian Cox process. Bayesian inference for spatial, spatiotemporal, multivariate and aggregated point processes using Markov chain Monte Carlo. See Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2015) <doi:10.18637/jss.v063.i07>.
Authors: Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle. Additional code contributions from Edzer Pebesma, Dominic Schumacher.
Maintainer: Benjamin M. Taylor <[email protected]>
License: GPL-2 | GPL-3
Version: 2.0
Built: 2024-11-01 04:55:00 UTC
Source: https://github.com/cran/lgcp

Help Index


lgcp

Description

An R package for spatiotemporal prediction and forecasting for log-Gaussian Cox processes.

Usage

lgcp

Format

An object of class logical of length 1.

Details

This package was not yet installed at build time.
Index: This package was not yet installed at build time.

For examples and further details of the package, type vignette("lgcp"), or refer to the paper associated with this package.

The content of lgcp can be broken up as follows:

Datasets wpopdata.rda, wtowncoords.rda, wtowns.rda. Giving regional and town poopulations as well as town coordinates,are provided by Wikipedia and The Office for National Statistics under respectively the Creative Commons Attribution-ShareAlike 3.0 Unported License and the Open Government Licence.

Data manipulation

Model fitting and parameter estimation

Unconditional and conditional simulation

Summary statistics, diagnostics and visualisation

Dependencies

The lgcp package depends upon some other important contributions to CRAN in order to operate; their uses here are indicated:

spatstat, sp, RandomFields, iterators, ncdf, methods, tcltk, rgl, rpanel, fields, rgdal, maptools, rgeos, raster

Citation

To see how to cite lgcp, type citation("lgcp") at the console.

Author(s)

Benjamin Taylor, Health and Medicine, Lancaster University, Tilman Davies, Institute of Fundamental Sciences - Statistics, Massey University, New Zealand., Barry Rowlingson, Health and Medicine, Lancaster University Peter Diggle, Health and Medicine, Lancaster University

References

  1. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  2. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

  3. Wood ATA, Chan G (1994). Simulation of Stationary Gaussian Processes in [0,1]d. Journal of Computational and Graphical Statistics, 3(4), 409-432.

  4. Moller J, Syversveen AR, Waagepetersen RP (1998). Log Gaussian Cox Processes. Scandinavian Journal of Statistics, 25(3), 451-482.


.onAttach function

Description

A function to print a welcome message on loading package

Usage

.onAttach(libname, pkgname)

Arguments

libname

libname argument

pkgname

pkgname argument

Value

...


add.list function

Description

This function adds the elements of two list objects together and returns the result in another list object.

Usage

add.list(list1, list2)

Arguments

list1

a list of objects that could be summed using "+"

list2

a list of objects that could be summed using "+"

Value

a list with ith entry the sum of list1[[i]] and list2[[i]]


addTemporalCovariates function

Description

A function to 'bolt on' temporal data onto a spatial covariate design matrix. The function takes a spatial design matrix, Z(s) and converts it to a spatiotemporal design matrix Z(s,t) when the effects can be separably decomposed i.e.,
Z(s,t)beta = Z_1(s)beta_1 + Z_2(t)beta_2

An example of this function in action is given in the vignette "Bayesian_lgcp", in the section on spatiotemporal data.

Usage

addTemporalCovariates(temporal.formula, T, laglength, tdata, Zmat)

Arguments

temporal.formula

a formula of the form t ~ tvar1 + tvar2 etc. Where the left hand side is a "t". Note there should not be an intercept term in both of the the spatial and temporal components.

T

the time point of interest

laglength

the number of previous time points to include in the analysis

tdata

a data frame with variable t minimally including times (T-laglength):T and var1, var2 etc.

Zmat

the spatial covariates Z(s), obtained by using the getZmat function.

Details

The main idea of this function is: having created a spatial Z(s) using getZmat, to create a dummy dataset tdata and temporal formula corresponding to the temporal component of the separable effects. The entries in the model matrix Z(s,t) corresponsing to the time covariates are constant over the observation window in space, but in general vary from time-point to time-point.

Note that if there is an intercept in the spatial part of the model e.g., X ~ var1 + var2, then in the temporal model, the intercept should be removed i.e., t ~ tvar1 + tvar2 - 1

Value

A list of design matrices, one for each time, Z(s,t) for t in (T-laglength):T

See Also

chooseCellwidth, getpolyol, guessinterp, getZmat, lgcpPrior, lgcpInits, CovFunction lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars, lgcpPredictMultitypeSpatialPlusPars


affine.fromFunction function

Description

An affine transformation of an object of class fromFunction

Usage

## S3 method for class 'fromFunction'
affine(X, mat, ...)

Arguments

X

an object of class fromFunction

mat

matrix of affine transformation

...

additional arguments

Value

the object acted on by the transformation matrix


affine.fromSPDF function

Description

An affine transformation of an object of class fromSPDF

Usage

## S3 method for class 'fromSPDF'
affine(X, mat, ...)

Arguments

X

an object of class fromSPDF

mat

matrix of affine transformation

...

additional arguments

Value

the object acted on by the transformation matrix


affine.fromXYZ function

Description

An affine transformation of an object of class fromXYZ. Nearest Neighbour interpolation

Usage

## S3 method for class 'fromXYZ'
affine(X, mat, ...)

Arguments

X

an object of class fromFunction

mat

matrix of affine transformation

...

additional arguments

Value

the object acted on by the transformation matrix


affine.SpatialPolygonsDataFrame function

Description

An affine transformation of an object of class SpatialPolygonsDataFrame

Usage

## S3 method for class 'SpatialPolygonsDataFrame'
affine(X, mat, ...)

Arguments

X

an object of class fromFunction

mat

matrix of affine transformation

...

additional arguments

Value

the object acted on by the transformation matrix


affine.stppp function

Description

An affine transformation of an object of class stppp

Usage

## S3 method for class 'stppp'
affine(X, mat, ...)

Arguments

X

an object of class stppp

mat

matrix of affine transformation

...

additional arguments

Value

the object acted on by the transformation matrix


aggCovInfo function

Description

Generic function for aggregation of covariate information.

Usage

aggCovInfo(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method aggCovInfo


aggCovInfo.ArealWeightedMean function

Description

Aggregation via weighted mean.

Usage

## S3 method for class 'ArealWeightedMean'
aggCovInfo(obj, regwts, ...)

Arguments

obj

an ArealWeightedMean object

regwts

regional (areal) weighting vector

...

additional arguments

Value

Areal weighted mean.


aggCovInfo.ArealWeightedSum function

Description

Aggregation via weighted sum. Use to sum up population counts in regions.

Usage

## S3 method for class 'ArealWeightedSum'
aggCovInfo(obj, regwts, ...)

Arguments

obj

an ArealWeightedSum object

regwts

regional (areal) weighting vector

...

additional arguments

Value

Areal weighted Sum.


aggCovInfo.Majority function

Description

Aggregation via majority.

Usage

## S3 method for class 'Majority'
aggCovInfo(obj, regwts, ...)

Arguments

obj

an Majority object

regwts

regional (areal) weighting vector

...

additional arguments

Value

The most popular cell type.


aggregateCovariateInfo function

Description

A function called by cov.interp.fft to allocate and perform interpolation of covariate infomation onto the FFT grid

Usage

aggregateCovariateInfo(cellidx, cidx, gidx, df, fftovl, classes, polyareas)

Arguments

cellidx

the index of the cell

cidx

index of covariate, no longer used

gidx

grid index

df

the data frame containing the covariate information

fftovl

an overlay of the fft grid onto the SpatialPolygonsDataFrame or SpatialPixelsDataFrame objects

classes

vector of class attributes of the dataframe

polyareas

polygon areas of the SpatialPolygonsDataFrame or SpatialPixelsDataFrame objects

Value

the interpolated covariate information onto the FFT grid


aggregateformulaList function

Description

An internal function to collect terms from a formulalist. Not intended for general use.

Usage

aggregateformulaList(x, ...)

Arguments

x

an object of class "formulaList"

...

other arguments

Value

a formula of the form X ~ var1 + var2 tec.


andrieuthomsh function

Description

A Robbins-Munro stochastic approximation update is used to adapt the tuning parameter of the proposal kernel. The idea is to update the tuning parameter at each iteration of the sampler:

h(i+1)=h(i)+η(i+1)(α(i)αopt),h^{(i+1)} = h^{(i)} + \eta^{(i+1)}(\alpha^{(i)} - \alpha_{opt}),

where h(i)h^{(i)} and α(i)\alpha^{(i)} are the tuning parameter and acceptance probability at iteration ii and αopt\alpha_{opt} is a target acceptance probability. For Gaussian targets, and in the limit as the dimension of the problem tends to infinity, an appropriate target acceptance probability for MALA algorithms is 0.574. The sequence {η(i)}\{\eta^{(i)}\} is chosen so that i=0η(i)\sum_{i=0}^\infty\eta^{(i)} is infinite whilst i=0(η(i))1+ϵ\sum_{i=0}^\infty\left(\eta^{(i)}\right)^{1+\epsilon} is finite for ϵ>0\epsilon>0. These two conditions ensure that any value of hh can be reached, but in a way that maintains the ergodic behaviour of the chain. One class of sequences with this property is,

η(i)=Ciα,\eta^{(i)} = \frac{C}{i^\alpha},

where α(0,1]\alpha\in(0,1] and C>0C>0.The scheme is set via the mcmcpars function.

Usage

andrieuthomsh(inith, alpha, C, targetacceptance = 0.574)

Arguments

inith

initial h

alpha

parameter α\alpha

C

parameter CC

targetacceptance

target acceptance probability

Value

an object of class andrieuthomsh

References

  1. Andrieu C, Thoms J (2008). A tutorial on adaptive MCMC. Statistics and Computing, 18(4), 343-373.

  2. Robbins H, Munro S (1951). A Stochastic Approximation Methods. The Annals of Mathematical Statistics, 22(3), 400-407.

  3. Roberts G, Rosenthal J (2001). Optimal Scaling for Various Metropolis-Hastings Algorithms. Statistical Science, 16(4), 351-367.

See Also

mcmcpars, lgcpPredict

Examples

andrieuthomsh(inith=1,alpha=0.5,C=1,targetacceptance=0.574)

as.array.lgcpgrid function

Description

Method to convert an lgcpgrid object into an array.

Usage

## S3 method for class 'lgcpgrid'
as.array(x, ...)

Arguments

x

an object of class lgcpgrid

...

other arguments

Value

conversion from lgcpgrid to array


as.fromXYZ function

Description

Generic function for conversion to a fromXYZ object (eg as would have been produced by spatialAtRisk for example.)

Usage

as.fromXYZ(X, ...)

Arguments

X

an object

...

additional arguments

Value

generic function returning method as.fromXYZ

See Also

as.im.fromXYZ, as.im.fromSPDF, as.im.fromFunction, as.fromXYZ


as.fromXYZ.fromFunction function

Description

Method for converting from the fromFunction class of objects to the fromXYZ class of objects. Clearly this requires the user to specify a grid onto which to compute the discretised verion.

Usage

## S3 method for class 'fromFunction'
as.fromXYZ(X, xyt, M = 100, N = 100, ...)

Arguments

X

an object of class fromFunction

xyt

and objects of class stppp

M

number of cells in x direction

N

number of cells in y direction

...

additional arguments

Value

object of class im containing normalised intensities

See Also

as.im.fromXYZ, as.im.fromSPDF, as.im.fromFunction, as.fromXYZ


as.im.fromFunction function

Description

Convert an object of class fromFunction(created by spatialAtRisk for example) into a spatstat im object.

Usage

## S3 method for class 'fromFunction'
as.im(X, xyt, M = 100, N = 100, ...)

Arguments

X

an object of class fromSPDF

xyt

and objects of class stppp

M

number of cells in x direction

N

number of cells in y direction

...

additional arguments

Value

object of class im containing normalised intensities

See Also

as.im.fromXYZ, as.im.fromSPDF, as.im.fromFunction, as.fromXYZ


as.im.fromSPDF function

Description

Convert an object of class fromSPDF (created by spatialAtRisk for example) into a spatstat im object.

Usage

## S3 method for class 'fromSPDF'
as.im(X, ncells = 100, ...)

Arguments

X

an object of class fromSPDF

ncells

number of cells to divide range into; default 100

...

additional arguments

Value

object of class im containing normalised intensities

See Also

as.im.fromXYZ, as.im.fromSPDF, as.im.fromFunction, as.fromXYZ


as.im.fromXYZ function

Description

Convert an object of class fromXYZ (created by spatialAtRisk for example) into a spatstat im object.

Usage

## S3 method for class 'fromXYZ'
as.im(X, ...)

Arguments

X

object of class fromXYZ

...

additional arguments

Value

object of class im containing normalised intensities

See Also

as.im.fromSPDF, as.im.fromFunction, as.fromXYZ


as.list.lgcpgrid function

Description

Method to convert an lgcpgrid object into a list of matrices.

Usage

## S3 method for class 'lgcpgrid'
as.list(x, ...)

Arguments

x

an object of class lgcpgrid

...

other arguments

Value

conversion from lgcpgrid to list

See Also

lgcpgrid.list, lgcpgrid.array, print.lgcpgrid, summary.lgcpgrid, quantile.lgcpgrid, image.lgcpgrid, plot.lgcpgrid


as.owin.stapp function

Description

A function to extract the SpatialPolygons part of W and return it as an owin object.

Usage

## S3 method for class 'stapp'
as.owin(W, ..., fatal = TRUE)

Arguments

W

see ?as.owin

...

see ?as.owin

fatal

see ?as.owin

Value

an owin object


as.owinlist function

Description

Generic function for creating lists of owin objects

Usage

as.owinlist(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method as.owinlist


as.owinlist.SpatialPolygonsDataFrame function

Description

A function to create a list of owin objects from a SpatialPolygonsDataFrame

Usage

## S3 method for class 'SpatialPolygonsDataFrame'
as.owinlist(obj, dmin = 0, check = TRUE, subset = rep(TRUE, length(obj)), ...)

Arguments

obj

a SpatialPolygonsDataFrame object

dmin

purpose is to simplify the SpatialPolygons. A numeric value giving the smallest permissible length of an edge. See ? simplify.owin

check

whether or not to use spatstat functions to check the validity of SpatialPolygons objects

subset

logical vector. Subset of regions to extract and conver to owin objects. By default, all regions are extracted.

...

additional arguments

Value

a list of owin objects corresponding to the constituent Polygons objects


as.owinlist.stapp function

Description

A function to create a list of owin objects from a stapp

Usage

## S3 method for class 'stapp'
as.owinlist(obj, dmin = 0, check = TRUE, ...)

Arguments

obj

an stapp object

dmin

purpose is to simplify the SpatialPolygons. A numeric value giving the smallest permissible length of an edge. See ? simplify.owin

check

whether or not to use spatstat functions to check the validity of SpatialPolygons objects

...

additional arguments

Value

a list of owin objects corresponding to the constituent Polygons objects


as.ppp.mstppp function

Description

Convert from mstppp to ppp. Can be useful for data handling.

Usage

## S3 method for class 'mstppp'
as.ppp(X, ..., fatal = TRUE)

Arguments

X

an object of class mstppp

...

additional arguments

fatal

logical value, see details in generic ?as.ppp

Value

a ppp object without observation times


as.ppp.stppp function

Description

Convert from stppp to ppp. Can be useful for data handling.

Usage

## S3 method for class 'stppp'
as.ppp(X, ..., fatal = TRUE)

Arguments

X

an object of class stppp

...

additional arguments

fatal

logical value, see details in generic ?as.ppp

Value

a ppp object without observation times


as.SpatialGridDataFrame function

Description

Generic method for convertign to an object of class SpatialGridDataFrame.

Usage

as.SpatialGridDataFrame(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method as.SpatialGridDataFrame

See Also

as.SpatialGridDataFrame.fromXYZ


as.SpatialGridDataFrame.fromXYZ function

Description

Method for converting objects of class fromXYZ into those of class SpatialGridDataFrame

Usage

## S3 method for class 'fromXYZ'
as.SpatialGridDataFrame(obj, ...)

Arguments

obj

an object of class spatialAtRisk

...

additional arguments

Value

an object of class SpatialGridDataFrame

See Also

as.SpatialGridDataFrame


as.SpatialPixelsDataFrame function

Description

Generic function for conversion to SpatialPixels objects.

Usage

as.SpatialPixelsDataFrame(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method as.SpatialPixels

See Also

as.SpatialPixelsDataFrame.lgcpgrid


as.SpatialPixelsDataFrame.lgcpgrid function

Description

Method to convert lgcpgrid objects to SpatialPixelsDataFrame objects.

Usage

## S3 method for class 'lgcpgrid'
as.SpatialPixelsDataFrame(obj, ...)

Arguments

obj

an lgcpgrid object

...

additional arguments to be passed to SpatialPoints, eg a proj4string

Value

Either a SpatialPixelsDataFrame, or a list consisting of SpatialPixelsDataFrame objects.


as.stppp function

Description

Generic function for converting to stppp objects

Usage

as.stppp(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method as.stppp


as.stppp.stapp function

Description

A function to convert stapp objects to stppp objects for use in lgcpPredict. The regional counts in the stapp object are assigned a random location within each areal region proportional to a population density (if that is available) else the counts are distributed uniformly across the observation windows.

Usage

## S3 method for class 'stapp'
as.stppp(obj, popden = NULL, n = 100, dmin = 0, check = TRUE, ...)

Arguments

obj

an object of class stapp

popden

a 'spatialAtRisk' of sub-class 'fromXYZ' object representing the population density, or for better results, lambda(s) can also be used here. Cases are distributed across the spatial region according to popden. NULL by default, which has the effect of assigning counts uniformly.

n

if popden is NULL, then this parameter controls the resolution of the uniform. Otherwise if popden is of class 'fromFunction', it controls the size of the imputation grid used for sampling. Default is 100.

dmin

If any reginal counts are missing, then a set of polygonal 'holes' in the observation window will be computed for each. dmin is the parameter used to control the simplification of these holes (see ?simplify.owin). default is zero.

check

logical. If any reginal counts are missing, then roughly speaking, check specifies whether to check the 'holes'.

...

additional arguments

Value

...


assigninterp function

Description

A function to assign an interpolation type to a variable in a data frame.

Usage

assigninterp(df, vars, value)

Arguments

df

a data frame

vars

character vector giving name of variables

value

an interpolation type, posssible options are given by typing interptypes(), see ?interptypes

Details

The three types of interpolation method employed in the package lgcp are:

  1. 'Majority' The interpolated value corresponds to the value of the covariate occupying the largest area of the computational cell.

  2. 'ArealWeightedMean' The interpolated value corresponds to the mean of all covariate values contributing to the computational cell weighted by their respective areas.

  3. 'ArealWeightedSum' The interpolated value is the sum of all contributing covariates weighed by the proportion of area with respect to the covariate polygons. For example, suppose region A has the same area as a computational grid cell and has 500 inhabitants. If that region occupies half of a computational grid cell, then this interpolation type assigns 250 inhabitants from A to the computational grid cell.

Value

assigns an interpolation type to a variable

See Also

chooseCellwidth, getpolyol, guessinterp, getZmat, addTemporalCovariates, lgcpPrior, lgcpInits, CovFunction lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars, lgcpPredictMultitypeSpatialPlusPars

Examples

## Not run: spdf a SpatialPolygonsDataFrame
## Not run: spdf@data <- assigninterp(df=spdf@data,vars="pop",value="ArealWeightedSum")

at function

Description

at function

Usage

at(t, mu, theta)

Arguments

t

change in time parameter, see Brix and Diggle (2001)

mu

mean

theta

parameter beta in Brix and Diggle

Value

...


autocorr function

Description

This function requires data to have been dumped to disk: see ?dump2dir and ?setoutput. The routine autocorr.lgcpPredict computes cellwise selected autocorrelations of Y. Since computing the quantiles is an expensive operation, the option to output the quantiles on a subregion of interest is also provided (by setting the argument inWindow, which has a sensible default).

Usage

autocorr(
  x,
  lags,
  tidx = NULL,
  inWindow = x$xyt$window,
  crop2parentwindow = TRUE,
  ...
)

Arguments

x

an object of class lgcpPredict

lags

a vector of the required lags

tidx

the index number of the the time interval of interest, default is the last time point.

inWindow

an observation owin window on which to compute the autocorrelations, can speed up calculation. Default is x$xyt$window, set to NULL for full grid.

crop2parentwindow

logical: whether to only compute autocorrelations for cells inside x$xyt$window (the 'parent window')

...

additional arguments

Value

an array, the [,,i]th slice being the grid of cell-wise autocorrelations.

See Also

lgcpPredict, dump2dir, setoutput, plot.lgcpAutocorr, ltar, parautocorr, traceplots, parsummary, textsummary, priorpost, postcov, exceedProbs, betavals, etavals


autocorrMultitype function

Description

A function to compute cell-wise autocorrelation in the latent field at specifiec lags

Usage

autocorrMultitype(
  x,
  lags,
  fieldno,
  inWindow = x$xyt$window,
  crop2parentwindow = TRUE,
  ...
)

Arguments

x

an object of class lgcpPredictMultitypeSpatialPlusParameters

lags

the lags at which to compute the autocorrelation

fieldno

the index of the lateyt field, the i in Y_i, see the help file for lgcpPredictMultitypeSpatialPlusParameters. IN diagnostic checking ,this command should be called for each field in the model.

inWindow

an observation owin window on which to compute the autocorrelations, can speed up calculation. Default is x$xyt$window, set to NULL for full grid.

crop2parentwindow

logical: whether to only compute autocorrelations for cells inside x$xyt$window (the 'parent window')

...

other arguments

Value

an array, the [,,i]th slice being the grid of cell-wise autocorrelations.


BetaParameters function

Description

An internal function to declare a vector a parameter vector for the main effects.

Usage

BetaParameters(beta)

Arguments

beta

a vector

Value

...


betavals function

Description

A function to return the sampled beta from a call to the function lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars or lgcpPredictMultitypeSpatialPlusPars

Usage

betavals(lg)

Arguments

lg

an object produced by a call to lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars orlgcpPredictMultitypeSpatialPlusPars

Value

the posterior sampled beta

See Also

ltar, autocorr, parautocorr, traceplots, parsummary, textsummary, priorpost, postcov, exceedProbs, etavals


blockcircbase function

Description

Compute the base matrix of a continuous Gaussian field. Computed as a block circulant matrix on a torus where x and y is the x and y centroids (must be equally spaced)

Usage

blockcircbase(x, y, sigma, phi, model, additionalparameters, inverse = FALSE)

Arguments

x

x centroids, an equally spaced vector

y

y centroids, an equally spaced vector

sigma

spatial variance parameter

phi

spatial decay parameter

model

covariance model, see ?CovarianceFct

additionalparameters

additional parameters for chosen covariance model. See ?CovarianceFct

inverse

logical. Whether to return the base matrix of the inverse covariance matrix (ie the base matrix for the precision matrix), default is FALSE

Value

the base matrix of a block circulant matrix representing a stationary covariance function on a toral grid.


blockcircbaseFunction function

Description

Compute the base matrix of a continuous Gaussian field. Computed as a block circulant matrix on a torus where x and y is the x and y centroids (must be equally spaced). This is an extension of the function blockcircbase to extend the range of covariance functions that can be fitted to the model.

Usage

blockcircbaseFunction(x, y, CovFunction, CovParameters, inverse = FALSE)

Arguments

x

x centroids, an equally spaced vector

y

y centroids, an equally spaced vector

CovFunction

a function of distance, returning the covariance between points that distance apart

CovParameters

an object of class CovParamters, see ?CovParameters

inverse

logical. Whether to return the base matrix of the inverse covariance matrix (ie the base matrix for the precision matrix), default is FALSE

Value

the base matrix of a block circulant matrix representing a stationary covariance function on a toral grid.

See Also

chooseCellwidth, getpolyol, guessinterp, getZmat, addTemporalCovariates, lgcpPrior, lgcpInits, lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars, lgcpPredictMultitypeSpatialPlusPars


bt.scalar function

Description

bt.scalar function

Usage

bt.scalar(t, theta)

Arguments

t

change in time, see Brix and Diggle (2001)

theta

parameter beta in Brix and Diggle

Value

...


checkObsWin function

Description

A function to run on an object generated by the "selectObsWindow" function. Plots the observation window with grid, use as a visual aid to check the choice of cell width is correct.

Usage

checkObsWin(ow)

Arguments

ow

an object generated by selectObsWindow, see ?selectObsWindow

Value

a plot of the observation window and grid

See Also

chooseCellwidth


chooseCellwidth function

Description

A function to help choose the cell width (the parameter "cellwidth" in lgcpPredictSpatialPlusPars, for example) prior to setting up the FFT grid, before an MCMC run.

Usage

chooseCellwidth(obj, cwinit)

Arguments

obj

an object of class ppp, stppp, SpatialPolygonsDataFrame, or owin

cwinit

the cell width

Details

Ideally this function should be used after having made a preliminary guess at the parameters of the latent field.The idea is to run chooseCellwidth several times, adjusting the parameter "cwinit" so as to balance available computational resources with output grid size.

Value

produces a plot of the observation window and computational grid.

See Also

getpolyol, guessinterp, getZmat, addTemporalCovariates, lgcpPrior, lgcpInits, CovFunction lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars, lgcpPredictMultitypeSpatialPlusPars


circulant function

Description

generic function for constructing circulant matrices

Usage

circulant(x, ...)

Arguments

x

an object

...

additional arguments

Value

method circulant


circulant.matrix function

Description

If x is a matrix whose columns are the bases of the sub-blocks of a block circulant matrix, then this function returns the block circulant matrix of interest.

Usage

## S3 method for class 'matrix'
circulant(x, ...)

Arguments

x

a matrix object

...

additional arguments

Value

If x is a matrix whose columns are the bases of the sub-blocks of a block circulant matrix, then this function returns the block circulant matrix of interest.


circulant.numeric function

Description

returns a circulant matrix with base x

Usage

## S3 method for class 'numeric'
circulant(x, ...)

Arguments

x

an numeric object

...

additional arguments

Value

a circulant matrix with base x


clearinterp function

Description

A function to remove the interpolation methods from a data frame.

Usage

clearinterp(df)

Arguments

df

a data frame

Value

removes the interpolation methods


computeGradtruncSpatial function

Description

Advanced use only. A function to compute a gradient truncation parameter for 'spatial only' MALA via simulation. The function requires an FFT 'grid' to be pre-computed, see fftgrid.

Usage

computeGradtruncSpatial(
  nsims = 100,
  scale = 1,
  nis,
  mu,
  rootQeigs,
  invrootQeigs,
  scaleconst,
  spatial,
  cellarea
)

Arguments

nsims

The number of simulations to use in computation of gradient truncation.

scale

multiplicative scaling constant, returned value is scale (times) max(gradient over simulations). Default scale is 1.

nis

cell counts on the extended grid

mu

parameter of latent field, mu

rootQeigs

root of eigenvalues of precision matrix of latent field

invrootQeigs

reciprocal root of eigenvalues of precision matrix of latent field

scaleconst

expected number of cases, or ML estimate of this quantity

spatial

spatial at risk interpolated onto grid of requisite size

cellarea

cell area

Value

gradient truncation parameter

See Also

fftgrid


computeGradtruncSpatioTemporal function

Description

Advanced use only. A function to compute a gradient truncation parameter for 'spatial only' MALA via simulation. The function requires an FFT 'grid' to be pre-computed, see fftgrid.

Usage

computeGradtruncSpatioTemporal(
  nsims = 100,
  scale = 1,
  nis,
  mu,
  rootQeigs,
  invrootQeigs,
  spatial,
  temporal,
  bt,
  cellarea
)

Arguments

nsims

The number of simulations to use in computation of gradient truncation.

scale

multiplicative scaling constant, returned value is scale (times) max(gradient over simulations). Default scale is 1.

nis

cell counts on the extended grid

mu

parameter of latent field, mu

rootQeigs

root of eigenvalues of precision matrix of latent field

invrootQeigs

reciprocal root of eigenvalues of precision matrix of latent field

spatial

spatial at risk interpolated onto grid of requisite size

temporal

fitted temporal values

bt

vectoer of variances b(delta t) in Brix and Diggle 2001

cellarea

cell area

Value

gradient truncation parameter

See Also

fftgrid


condProbs function

Description

A function to compute the conditional type-probabilities from a multivariate LGCP. See the vignette "Bayesian_lgcp" for a full explanation of this.

Usage

condProbs(obj)

Arguments

obj

an lgcpPredictMultitypeSpatialPlusParameters object

Details

We suppose there are K point types of interest. The model for point-type k is as follows:

X_k(s) ~ Poisson[R_k(s)]

R_k(s) = C_A lambda_k(s) exp[Z_k(s)beta_k+Y_k(s)]

Here X_k(s) is the number of events of type k in the computational grid cell containing the point s, R_k(s) is the Poisson rate, C_A is the cell area, lambda_k(s) is a known offset, Z_k(s) is a vector of measured covariates and Y_i(s) where i = 1,...,K+1 are latent Gaussian processes on the computational grid. The other parameters in the model are beta_k , the covariate effects for the kth type; and eta_i = [log(sigma_i),log(phi_i)], the parameters of the process Y_i for i = 1,...,K+1 on an appropriately transformed (again, in this case log) scale.

The term 'conditional probability of type k' means the probability that at a particular location there will be an event of type k, which denoted p_k.

Value

an lgcpgrid object containing the consitional type-probabilities for each type

See Also

segProbs, postcov.lgcpPredictSpatialOnlyPlusParameters, postcov.lgcpPredictAggregateSpatialPlusParameters, postcov.lgcpPredictSpatioTemporalPlusParameters, postcov.lgcpPredictMultitypeSpatialPlusParameters, ltar, autocorr, parautocorr, traceplots, parsummary, textsummary, priorpost, postcov, exceedProbs, betavals, etavals


constanth function

Description

This function is used to set up a constant acceptance scheme in the argument mcmc.control of the function lgcpPredict. The scheme is set via the mcmcpars function.

Usage

constanth(h)

Arguments

h

an object

Value

object of class constanth

See Also

mcmcpars, lgcpPredict

Examples

constanth(0.01)

constantInTime function

Description

Generic function for creating constant-in-time temporalAtRisk objects, that is for models where mu(t) can be assumed to be constant in time. The assumption being that the global at-risk population does not change in size over time.

Usage

constantInTime(obj, ...)

Arguments

obj

an object

...

additional arguments

Details

For further details of temporalAtRisk objects, see ?temporalAtRisk>

Value

method constantInTime

See Also

temporalAtRisk, spatialAtRisk, temporalAtRisk.numeric, temporalAtRisk.function, constantInTime.numeric, constantInTime.stppp, print.temporalAtRisk, plot.temporalAtRisk


constantInTime.numeric function

Description

Create a constant-in-time temporalAtRisk object from a numeric object of length 1. The returned temporalAtRisk object is assumed to have been scaled correctly by the user so that mu(t) = E(number of cases in a unit time interval).

Usage

## S3 method for class 'numeric'
constantInTime(obj, tlim, warn = TRUE, ...)

Arguments

obj

numeric constant

tlim

vector of length 2 giving time limits

warn

Issue a warning if the given temporal intensity treated is treated as 'known'?

...

additional arguments

Details

For further details of temporalAtRisk objects, see ?temporalAtRisk>

Value

a function f(t) giving the (constant) temporal intensity at time t for integer t in the interval [tlim[1],tlim[2]] of class temporalAtRisk

See Also

temporalAtRisk, spatialAtRisk, temporalAtRisk.numeric, temporalAtRisk.function, constantInTime, constantInTime.stppp, print.temporalAtRisk, plot.temporalAtRisk,


constantInTime.stppp function

Description

Create a constant-in-time temporalAtRisk object from an stppp object. The returned temporalAtRisk object is scaled to return mu(t) = E(number of cases in a unit time interval).

Usage

## S3 method for class 'stppp'
constantInTime(obj, ...)

Arguments

obj

an object of class stppp.

...

additional arguments

Details

For further details of temporalAtRisk objects, see ?temporalAtRisk>

Value

a function f(t) giving the (constant) temporal intensity at time t for integer t in the interval [tlim[1],tlim[2]] of class temporalAtRisk

See Also

temporalAtRisk, spatialAtRisk, temporalAtRisk.numeric, temporalAtRisk.function, constantInTime, constantInTime.numeric, print.temporalAtRisk, plot.temporalAtRisk,


cov.interp.fft function

Description

A function to interpolate covariate values onto the fft grid, ready for analysis

Usage

cov.interp.fft(
  formula,
  W,
  regionalcovariates = NULL,
  pixelcovariates = NULL,
  mcens,
  ncens,
  cellInside,
  overl = NULL
)

Arguments

formula

an object of class formula (or one that can be coerced to that class) starting with X ~ (eg X~var1+var2 *NOT for example* Y~var1+var2): a symbolic description of the model to be fitted.

W

an owin observation window

regionalcovariates

an optional SpatialPolygonsDataFrame

pixelcovariates

an optional SpatialPixelsDataFrame

mcens

x-coordinates of output grid centroids (not fft grid centroids ie *not* the extended grid)

ncens

y-coordinates of output grid centroids (not fft grid centroids ie *not* the extended grid)

cellInside

a 0-1 matrix indicating which computational cells are inside the observation window

overl

an overlay of the computational grid onto the SpatialPolygonsDataFrame or SpatialPixelsDataFrame.

Value

The interpolated design matrix, ready for analysis


CovarianceFct function

Description

A function to

Usage

CovarianceFct(u, sigma, phi, model, additionalparameters)

Arguments

u

distance

sigma

parameter sigma

phi

parameter phi

model

character string, the model

additionalparameters

additional parameters for the covariance function that will be fixed.

Value

the covariance function evaluated at the specified distances


covEffects function

Description

A function used in conjunction with the function "expectation" to compute the main covariate effects,
lambda(s) exp[Z(s)beta]
in each computational grid cell. Currently only implemented for spatial processes (lgcpPredictSpatialPlusPars and lgcpPredictAggregateSpatialPlusPars).

Usage

covEffects(Y, beta, eta, Z, otherargs)

Arguments

Y

the latent field

beta

the main effects

eta

the parameters of the latent field

Z

the design matrix

otherargs

other arguments to the function (see vignette "Bayesian_lgcp" for an explanation)

Value

the main effects

See Also

expectation, lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars

Examples

## Not run: ex <- expectation(lg,covEffects)[[1]] # lg is output from spatial LGCP MCMC

CovFunction function

Description

A Generic method used to specify the choice of covariance function for use in the MCMC algorithm. For further details and examples, see the vignette "Bayesian_lgcp".

Usage

CovFunction(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method CovFunction

See Also

CovFunction.function, exponentialCovFct, RandomFieldsCovFct, SpikedExponentialCovFct


CovFunction.function function

Description

A function used to define the covariance function for the latent field prior to running the MCMC algorithm

Usage

## S3 method for class ''function''
CovFunction(obj, ...)

Arguments

obj

a function object

...

additional arguments

Value

the covariance function ready to run the MCMC routine.

See Also

exponentialCovFct, RandomFieldsCovFct, SpikedExponentialCovFct, CovarianceFct

Examples

## Not run: cf1 <- CovFunction(exponentialCovFct)
## Not run: cf2 <- CovFunction(RandomFieldsCovFct(model="matern",additionalparameters=1))

CovParameters function

Description

A function to provide a structure for the parameters of the latent field. Not intended for general use.

Usage

CovParameters(list)

Arguments

list

a list

Value

an object used in the MCMC routine.


Cvb function

Description

This function is used in thetaEst to estimate the temporal correlation parameter, theta.

Usage

Cvb(xyt, spatial.intensity, N = 100, spatial.covmodel, covpars)

Arguments

xyt

object of class stppp

spatial.intensity

bivariate density estimate of lambda, an object of class im (produced from density.ppp for example)

N

number of integration points

spatial.covmodel

spatial covariance model

covpars

additional covariance parameters

Value

a function, see below. Computes Monte carlo estimate of function C(v;beta) in Brix and Diggle 2001 pp 829 (... note later corrigendum to paper (2003) corrects the expression given in this paper)

References

  1. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/

  2. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

See Also

thetaEst


d.func function

Description

d.func function

Usage

d.func(mat1il, mat2jk, i, j, l, k)

Arguments

mat1il

matrix 1

mat2jk

matrix 2

i

index matrix 1 number 1

j

index matrix 2 number 1

l

index matrix 1 number 2

k

index matrix 2 number 2

Value

...


density.stppp function

Description

A wrapper function for density.ppp.

Usage

## S3 method for class 'stppp'
density(x, bandwidth = NULL, ...)

Arguments

x

an stppp object

bandwidth

'bandwidth' parameter, equivanent to parameter sigma in ?density.ppp ie standard deviation of isotropic Gaussian smoothing kernel.

...

additional arguments to be passed to density.ppp

Value

bivariate density estimate of xyt; not this is a wrapper function for density.ppp

See Also

density.ppp


discreteWindow function

Description

Generic function for extracting the FFT discrete window.

Usage

discreteWindow(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method discreteWindow

See Also

discreteWindow.lgcpPredict


discreteWindow.lgcpPredict function

Description

A function for extracting the FFT discrete window from an lgcpPredict object.

Usage

## S3 method for class 'lgcpPredict'
discreteWindow(obj, inclusion = "touching", ...)

Arguments

obj

an lgcpPredict object

inclusion

criterion for cells being included into observation window. Either 'touching' or 'centroid'. The former includes all cells that touch the observation window, the latter includes all cells whose centroids are inside the observation window.

...

additional arguments

Value

...


dump2dir function

Description

This function, when set by the gridfunction argument of setoutput, in turn called by the argument output.control of lgcpPredict facilitates the dumping of data to disk. Data is dumped to a netCDF file, simout.nc, stored in the directory specified by the user. If the directory does not exist, then it will be created. Since the requested data dumped to disk may be very large in a run of lgcpPredict, by default, the user is prompted as to whether to proceed with prediction, this can be turned off by setting the option forceSave=TRUE detailed here. To save space, or increase the number of simulations that can be stored for a fixed disk space the option to only save the last time point is also available (lastonly=TRUE, which is the default setting).

Usage

dump2dir(dirname, lastonly = TRUE, forceSave = FALSE)

Arguments

dirname

character vector of length 1 containing the name of the directory to create

lastonly

only save output from time T? (see ?lgcpPredict for definition of T)

forceSave

option to override display of menu

Value

object of class dump2dir

See Also

setoutput, \ GFinitialise, GFupdate, GFfinalise, GFreturnvalue


eigenfrombase function

Description

A function to compute the eigenvalues of an SPD block circulant matrix given the base matrix.

Usage

eigenfrombase(x)

Arguments

x

the base matrix

Value

the eigenvalues


etavals function

Description

A function to return the sampled eta from a call to the function lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars or lgcpPredictMultitypeSpatialPlusPars

Usage

etavals(lg)

Arguments

lg

an object produced by a call to lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars orlgcpPredictMultitypeSpatialPlusPars

Value

the posterior sampled eta

See Also

ltar, autocorr, parautocorr, traceplots, parsummary, textsummary, priorpost, postcov, exceedProbs, betavals


EvaluatePrior function

Description

An internal function used in the MCMC routine to evaluate the prior for a given set of parameters

Usage

EvaluatePrior(etaParameters, betaParameters, prior)

Arguments

etaParameters

the paramter eta

betaParameters

the parameter beta

prior

the prior

Value

the prior evaluated at the given values.


exceedProbs function

Description

This function can be called using MonteCarloAverage (see fun3 the examples in the help file for MonteCarloAverage). It computes exceedance probabilities,

P[exp(Yt1:t2)>k],P[\exp(Y_{t_1:t_2})>k],

that is the probability that the relative reisk exceeds threshold kk. Note that it is possible to pass vectors of tresholds to the function, and the exceedance probabilities will be computed for each of these.

Usage

exceedProbs(threshold, direction = "upper")

Arguments

threshold

vector of threshold levels for the indicator function

direction

default 'upper' giving exceedance probabilities, alternative is 'lower', which gives 'subordinate probabilities'

Value

a function of Y that computes the indicator function I(exp(Y)>threshold) evaluated for each cell of a matrix Y If several tresholds are specified an array is returned with the [,,i]th slice equal to I(exp(Y)>threshold[i])

See Also

MonteCarloAverage, setoutput


exceedProbsAggregated function

Description

NOTE THIS FUNCTION IS IN TESTING AT PRESENT

Usage

exceedProbsAggregated(threshold, lg = NULL, lastonly = TRUE)

Arguments

threshold

vector of threshold levels for the indicator function

lg

an object of class aggregatedPredict

lastonly

logical, whether to only compute the exceedances for the last time point. default is TRUE

Details

This function computes regional exceedance probabilities after MCMC has finished, it requires the information to have been dumped to disk, and to have been computed using the function lgcpPredictAggregated

P[exp(Yt1:t2)>k],P[\exp(Y_{t_1:t_2})>k],

that is the probability that the relative risk exceeds threshold kk. Note that it is possible to pass vectors of tresholds to the function, and the exceedance probabilities will be computed for each of these.

Value

a function of Y that computes the indicator function I(exp(Y)>threshold) evaluated for each cell of a matrix Y, but with values aggregated to regions If several tresholds are specified an array is returned with the [,,i]th slice equal to I(exp(Y)>threshold[i])

See Also

lgcpPredictAggregated


expectation function

Description

Generic function used in the computation of Monte Carlo expectations.

Usage

expectation(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method expectation


expectation.lgcpPredict function

Description

This function requires data to have been dumped to disk: see ?dump2dir and ?setoutput. This function computes the Monte Carlo Average of a function where data from a run of lgcpPredict has been dumped to disk.

Usage

## S3 method for class 'lgcpPredict'
expectation(obj, fun, maxit = NULL, ...)

Arguments

obj

an object of class lgcpPredict

fun

a function accepting a single argument that returns a numeric vector, matrix or array object

maxit

Not used in ordinary circumstances. Defines subset of samples over which to compute expectation. Expectation is computed using information from iterations 1:maxit, where 1 is the first non-burn in iteration dumped to disk.

...

additional arguments

Details

A Monte Carlo Average is computed as:

Eπ(Yt1:t2Xt1:t2)[g(Yt1:t2)]1ni=1ng(Yt1:t2(i))E_{\pi(Y_{t_1:t_2}|X_{t_1:t_2})}[g(Y_{t_1:t_2})] \approx \frac1n\sum_{i=1}^n g(Y_{t_1:t_2}^{(i)})

where gg is a function of interest, Yt1:t2(i)Y_{t_1:t_2}^{(i)} is the iith retained sample from the target and nn is the total number of retained iterations. For example, to compute the mean of Yt1:t2Y_{t_1:t_2} set,

g(Yt1:t2)=Yt1:t2,g(Y_{t_1:t_2}) = Y_{t_1:t_2},

the output from such a Monte Carlo average would be a set of t2t1t_2-t_1 grids, each cell of which being equal to the mean over all retained iterations of the algorithm (NOTE: this is just an example computation, in practice, there is no need to compute the mean on line explicitly, as this is already done by default in lgcpPredict).

Value

the expectated value of that function

See Also

lgcpPredict, dump2dir, setoutput


expectation.lgcpPredictSpatialOnlyPlusParameters function

Description

This function requires data to have been dumped to disk: see ?dump2dir and ?setoutput. This function computes the Monte Carlo Average of a function where data from a run of lgcpPredict has been dumped to disk.

Usage

"expectation(obj,fun,maxit=NULL,...)"

Arguments

obj

an object of class lgcpPredictSpatialOnlyPlusParameters

fun

a function with arguments 'Y', 'beta', 'eta', 'Z' and 'otherargs'. See vignette("Bayesian_lgcp") for an example

maxit

Not used in ordinary circumstances. Defines subset of samples over which to compute expectation. Expectation is computed using information from iterations 1:maxit, where 1 is the first non-burn in iteration dumped to disk.

...

additional arguments

Value

the expectated value of that function


exponentialCovFct function

Description

A function to declare and also evaluate an exponential covariance function.

Usage

exponentialCovFct(d, CovParameters)

Arguments

d

toral distance

CovParameters

parameters of the latent field, an object of class "CovParamaters".

Value

the exponential covariance function

See Also

CovFunction.function, RandomFieldsCovFct, SpikedExponentialCovFct


extendspatialAtRisk function

Description

A function to extend a spatialAtRisk object, used in interpolating the fft grid NOTE THIS DOES NOT RETURN A PROPER spatialAtRisk OBJECT SINCE THE NORMALISING CONSTANT IS PUT BACK IN.

Usage

extendspatialAtRisk(spatial)

Arguments

spatial

a spatialAtRisk object inheriting class 'fromXYZ'

Value

the spatialAtRisk object on a slightly larger grid, with zeros appearing outside the original extent.


extract function

Description

Generic function for extracting information dumped to disk. See extract.lgcpPredict for further information.

Usage

extract(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method extract

See Also

extract.lgcpPredict


extract.lgcpPredict function

Description

This function requires data to have been dumped to disk: see ?dump2dir and ?setoutput. extract.lgcpPredict extracts chunks of data that have been dumped to disk. The subset of data can either be specified using an (x,y,t,s) box or (window,t,s) region where window is a polygonal subregion of interest.

Usage

## S3 method for class 'lgcpPredict'
extract(
  obj,
  x = NULL,
  y = NULL,
  t,
  s = -1,
  inWindow = NULL,
  crop2parentwindow = TRUE,
  ...
)

Arguments

obj

an object of class lgcpPredict

x

range of x-indices: vector (eg c(2,4)) corresponding to desired subset of x coordinates. If equal to -1, then all cells in this dimension are extracted

y

range of y-indices as above

t

range of t-indices: time indices of interest

s

range of s-indices ie the simulation indices of interest

inWindow

an observation owin window over which to extract the data (alternative to specifying x and y).

crop2parentwindow

logical: whether to only extract cells inside obj$xyt$window (the 'parent window')

...

additional arguments

Value

extracted array

See Also

lgcpPredict, loc2poly, dump2dir, setoutput


Extract.mstppp function

Description

extracting subsets of an mstppp object.

Usage

"x[subset]"

Arguments

x

an object of class mstppp

subset

subsetto extract

Value

extracts subset of an mstppp object


Extract.stppp function

Description

extracting subsets of an stppp object.

Usage

"x[subset]"

Arguments

x

an object of class stppp

subset

the subset to extract

Value

extracts subset of an stppp object

Examples

## Not run: xyt <- lgcpSim()
## Not run: xyt
## Not run: xyt[xyt$t>0.5]

fftgrid function

Description

! As of lgcp version 0.9-5, this function is no longer used !

Usage

fftgrid(xyt, M, N, spatial, sigma, phi, model, covpars, inclusion = "touching")

Arguments

xyt

object of class stppp

M

number of centroids in x-direction

N

number of centroids in y-direction

spatial

an object of class spatialAtRisk

sigma

scaling paramter for spatial covariance function, see Brix and Diggle (2001)

phi

scaling paramter for spatial covariance function, see Brix and Diggle (2001)

model

correlation type see ?CovarianceFct

covpars

vector of additional parameters for certain classes of covariance function (eg Matern), these must be supplied in the order given in ?CovarianceFct

inclusion

criterion for cells being included into observation window. Either 'touching' or 'centroid'. The former includes all cells that touch the observation window, the latter includes all cells whose centroids are inside the observation window.

Details

Advanced use only. Computes various quantities for use in lgcpPredict, lgcpSim .

Value

fft objects for use in MALA


fftinterpolate function

Description

Generic function used for computing interpolations used in the function fftgrid.

Usage

fftinterpolate(spatial, ...)

Arguments

spatial

an object

...

additional arguments

Value

method fftinterpolate

See Also

fftgrid


fftinterpolate.fromFunction function

Description

This method performs interpolation within the function fftgrid for fromFunction objects.

Usage

## S3 method for class 'fromFunction'
fftinterpolate(spatial, mcens, ncens, ext, ...)

Arguments

spatial

objects of class spatialAtRisk

mcens

x-coordinates of interpolation grid in extended space

ncens

y-coordinates of interpolation grid in extended space

ext

integer multiple by which grid should be extended, default is 2. Generally this will not need to be altered, but if the spatial correlation decays slowly, increasing 'ext' may be necessary.

...

additional arguments

Value

matrix of interpolated values

See Also

fftgrid, spatialAtRisk.function


fftinterpolate.fromSPDF function

Description

This method performs interpolation within the function fftgrid for fromSPDF objects.

Usage

## S3 method for class 'fromSPDF'
fftinterpolate(spatial, mcens, ncens, ext, ...)

Arguments

spatial

objects of class spatialAtRisk

mcens

x-coordinates of interpolation grid in extended space

ncens

y-coordinates of interpolation grid in extended space

ext

integer multiple by which grid should be extended, default is 2. Generally this will not need to be altered, but if the spatial correlation decays slowly, increasing 'ext' may be necessary.

...

additional arguments

Value

matrix of interpolated values

See Also

fftgrid, spatialAtRisk.SpatialPolygonsDataFrame


interpolate.fromXYZ function

Description

This method performs interpolation within the function fftgrid for fromXYZ objects.

Usage

## S3 method for class 'fromXYZ'
fftinterpolate(spatial, mcens, ncens, ext, ...)

Arguments

spatial

objects of class spatialAtRisk

mcens

x-coordinates of interpolation grid in extended space

ncens

y-coordinates of interpolation grid in extended space

ext

integer multiple by which grid should be extended, default is 2. Generally this will not need to be altered, but if the spatial correlation decays slowly, increasing 'ext' may be necessary.

...

additional arguments

Value

matrix of interpolated values

See Also

fftgrid, spatialAtRisk.fromXYZ


fftmultiply function

Description

A function to pre-multiply a vector by a block cirulant matrix

Usage

fftmultiply(efb, vector)

Arguments

efb

eigenvalues of the matrix

vector

the vector

Value

a vector: the product of the matrix and the vector.


formulaList function

Description

A function to creat an object of class "formulaList" from a list of "formula" objects; use to define the model for the main effects prior to running the multivariate MCMC algorithm.

Usage

formulaList(X)

Arguments

X

a list object, each element of which is a formula

Value

an object of class "formulaList"


GAfinalise function

Description

Generic function defining the the finalisation step for the gridAverage class of functions. The function is called invisibly within MALAlgcp and facilitates the computation of Monte Carlo Averages online.

Usage

GAfinalise(F, ...)

Arguments

F

an object

...

additional arguments

Value

method GAfinalise

See Also

setoutput, GAinitialise, GAupdate, GAreturnvalue


GAfinalise.MonteCarloAverage function

Description

Finalise a Monte Carlo averaging scheme. Divide the sum by the number of iterations.

Usage

## S3 method for class 'MonteCarloAverage'
GAfinalise(F, ...)

Arguments

F

an object of class MonteCarloAverage

...

additional arguments

Value

computes Monte Carlo averages

See Also

MonteCarloAverage, setoutput, GAinitialise, GAupdate, GAfinalise, GAreturnvalue


GAfinalise.nullAverage function

Description

This is a null function and performs no action.

Usage

## S3 method for class 'nullAverage'
GAfinalise(F, ...)

Arguments

F

an object of class nullAverage

...

additional arguments

Value

nothing

See Also

nullAverage, setoutput, GAinitialise, GAupdate, GAfinalise, GAreturnvalue


GAinitialise function

Description

Generic function defining the the initialisation step for the gridAverage class of functions. The function is called invisibly within MALAlgcp and facilitates the computation of Monte Carlo Averages online.

Usage

GAinitialise(F, ...)

Arguments

F

an object

...

additional arguments

Value

method GAinitialise

See Also

setoutput, GAupdate, GAfinalise, GAreturnvalue


GAinitialise.MonteCarloAverage function

Description

Initialise a Monte Carlo averaging scheme.

Usage

## S3 method for class 'MonteCarloAverage'
GAinitialise(F, ...)

Arguments

F

an object of class MonteCarloAverage

...

additional arguments

Value

nothing

See Also

MonteCarloAverage, setoutput, GAinitialise, GAupdate, GAfinalise, GAreturnvalue


GAinitialise.nullAverage function

Description

This is a null function and performs no action.

Usage

## S3 method for class 'nullAverage'
GAinitialise(F, ...)

Arguments

F

an object of class nullAverage

...

additional arguments

Value

nothing

See Also

nullAverage, setoutput, GAinitialise, GAupdate, GAfinalise, GAreturnvalue


GammafromY function

Description

A function to change Ys (spatially correlated noise) into Gammas (white noise). Used in the MALA algorithm.

Usage

GammafromY(Y, rootQeigs, mu)

Arguments

Y

Y matrix

rootQeigs

square root of the eigenvectors of the precision matrix

mu

parameter of the latent Gaussian field

Value

Gamma


GAreturnvalue function

Description

Generic function defining the the returned value for the gridAverage class of functions. The function is called invisibly within MALAlgcp and facilitates the computation of Monte Carlo Averages online.

Usage

GAreturnvalue(F, ...)

Arguments

F

an object

...

additional arguments

Value

method GAreturnvalue

See Also

setoutput, GAinitialise, GAupdate, GAfinalise


GAreturnvalue.MonteCarloAverage function

Description

Returns the required Monte Carlo average.

Usage

## S3 method for class 'MonteCarloAverage'
GAreturnvalue(F, ...)

Arguments

F

an object of class MonteCarloAverage

...

additional arguments

Value

results from MonteCarloAverage

See Also

MonteCarloAverage, setoutput, GAinitialise, GAupdate, GAfinalise, GAreturnvalue


GAreturnvalue.nullAverage function##'

Description

This is a null function and performs no action.

Usage

## S3 method for class 'nullAverage'
GAreturnvalue(F, ...)

Arguments

F

an object of class nullAverage

...

additional arguments

Value

nothing

See Also

nullAverage, setoutput, GAinitialise, GAupdate, GAfinalise, GAreturnvalue


GAupdate function

Description

Generic function defining the the update step for the gridAverage class of functions. The function is called invisibly within MALAlgcp and facilitates the computation of Monte Carlo Averages online.

Usage

GAupdate(F, ...)

Arguments

F

an object

...

additional arguments

Value

method GAupdate

See Also

setoutput, GAinitialise, GAfinalise, GAreturnvalue


GAupdate.MonteCarloAverage function

Description

Update a Monte Carlo averaging scheme. This function performs the Monte Carlo sum online.

Usage

## S3 method for class 'MonteCarloAverage'
GAupdate(F, ...)

Arguments

F

an object of class MonteCarloAverage

...

additional arguments

Value

updates Monte Carlo sums

See Also

MonteCarloAverage, setoutput, GAinitialise, GAupdate, GAfinalise, GAreturnvalue


GAupdate.nullAverage function

Description

This is a null function and performs no action.

Usage

## S3 method for class 'nullAverage'
GAupdate(F, ...)

Arguments

F

an object of class nullAverage

...

additional arguments

Value

nothing

See Also

nullAverage, setoutput, GAinitialise, GAupdate, GAfinalise, GAreturnvalue


GaussianPrior function

Description

A function to create a Gaussian prior.

Usage

GaussianPrior(mean, variance)

Arguments

mean

a vector of length 2 representing the mean.

variance

a 2x2 matrix representing the variance.

Value

an object of class LogGaussianPrior that can be passed to the function PriorSpec.

See Also

LogGaussianPrior, linkPriorSpec.list

Examples

## Not run: GaussianPrior(mean=rep(0,9),variance=diag(10^6,9))

gDisjoint_wg function

Description

A function to

Usage

gDisjoint_wg(w, gri)

Arguments

w

X

gri

X

Value

...


genFFTgrid function

Description

A function to generate an FFT grid and associated quantities including cell dimensions, size of extended grid, centroids, cell area, cellInside matrix (a 0/1 matrix: is the centroid of the cell inside the observation window?)

Usage

genFFTgrid(study.region, M, N, ext, inclusion = "touching")

Arguments

study.region

an owin object

M

number of cells in x direction

N

number of cells in y direction

ext

multiplying constant: the size of the extended grid: ext*M by ext*N

inclusion

criterion for cells being included into observation window. Either 'touching' or 'centroid'. The former includes all cells that touch the observation window, the latter includes all cells whose centroids are inside the observation window.

Value

a list


getCellCounts function

Description

This function is used to count the number of observations falling inside grid cells.

Usage

getCellCounts(x, y, xgrid, ygrid)

Arguments

x

x-coordinates of events

y

y-coordinates of events

xgrid

x-coordinates of grid centroids

ygrid

y-coordinates of grid centroids

Value

The number of observations in each grid cell.


getCounts function

Description

This function is used to count the number of observations falling inside grid cells, the output is used in the function lgcpPredict.

Usage

getCounts(xyt, subset = rep(TRUE, xyt$n), M, N, ext)

Arguments

xyt

stppp or ppp data object

subset

Logical vector. Subset of data of interest, by default this is all data.

M

number of centroids in x-direction

N

number of cnetroids in y-direction

ext

how far to extend the grid eg (M,N) to (ext*M,ext*N)

Value

The number of observations in each grid cell returned on a grid suitable for use in the extended FFT space.

See Also

lgcpPredict

Examples

require(spatstat.explore)
xyt <- stppp(ppp(runif(100),runif(100)),t=1:100,tlim=c(1,100))
cts <- getCounts(xyt,M=64,N=64,ext=2) # gives an output grid of size 128 by 128
ctssub <- cts[1:64,1:64] # returns the cell counts in the observation
                         # window of interest

getCovParameters function

Description

Internal function for retrieving covariance parameters. not indended for general use.

Usage

getCovParameters(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method getCovParameters


getCovParameters.GPrealisation function

Description

Internal function for retrieving covariance parameters. not indended for general use.

Usage

## S3 method for class 'GPrealisation'
getCovParameters(obj, ...)

Arguments

obj

an GPrealisation object

...

additional arguments

Value

...


getCovParameters.list function

Description

Internal function for retrieving covariance parameters. not indended for general use.

Usage

## S3 method for class 'list'
getCovParameters(obj, ...)

Arguments

obj

an list object

...

additional arguments

Value

...


getinterp function

Description

A function to get the interpolation methods from a data frame

Usage

getinterp(df)

Arguments

df

a data frame

Details

The three types of interpolation method employed in the package lgcp are:

  1. 'Majority' The interpolated value corresponds to the value of the covariate occupying the largest area of the computational cell.

  2. 'ArealWeightedMean' The interpolated value corresponds to the mean of all covariate values contributing to the computational cell weighted by their respective areas.

  3. 'ArealWeightedSum' The interpolated value is the sum of all contributing covariates weighed by the proportion of area with respect to the covariate polygons. For example, suppose region A has the same area as a computational grid cell and has 500 inhabitants. If that region occupies half of a computational grid cell, then this interpolation type assigns 250 inhabitants from A to the computational grid cell.

Value

the interpolation methods


getlgcpPredictSpatialINLA function

Description

A function to download and 'install' lgcpPredictSpatialINLA into the lgcp namespace.

Usage

getlgcpPredictSpatialINLA()

Value

Does not return anything


getLHSformulaList function

Description

A function to retrieve the dependent variables from a formulaList object. Not intended for general use.

Usage

getLHSformulaList(fl)

Arguments

fl

an object of class "formulaList"

Value

the indepentdent variables


getpolyol function

Description

A function to perform polygon/polygon overlay operations and form the computational grid, on which inference will eventually take place. For details and examples of using this fucntion, please see the package vignette "Bayesian_lgcp"

Usage

getpolyol(
  data,
  regionalcovariates = NULL,
  pixelcovariates = NULL,
  cellwidth,
  ext = 2,
  inclusion = "touching"
)

Arguments

data

an object of class ppp or SpatialPolygonsDataFrame, containing the event counts, i.e. the dataset that will eventually be analysed

regionalcovariates

an object of class SpatialPolygonsDataFrame containng regionally measured covariate information

pixelcovariates

X an object of class SpatialPixelsDataFrame containng regionally measured covariate information

cellwidth

the chosen cell width

ext

the amount by which to extend the observation window in forming the FFT grid, default is 2. In the case that the point pattern has long range spatial correlation, this may need to be increased.

inclusion

criterion for cells being included into observation window. Either 'touching' or 'centroid'. The former, the default, includes all cells that touch the observation window, the latter includes all cells whose centroids are inside the observation window.

Value

an object of class lgcppolyol, which can then be fed into the function getZmat.

See Also

chooseCellwidth, guessinterp, getZmat, addTemporalCovariates, lgcpPrior, lgcpInits, CovFunction lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars, lgcpPredictMultitypeSpatialPlusPars


getRotation function

Description

Generic function for the computation of rotation matrices.

Usage

getRotation(xyt, ...)

Arguments

xyt

an object

...

additional arguments

Value

method getRotation

See Also

getRotation.stppp


getRotation.default function

Description

Presently there is no default method, see ?getRotation.stppp

Usage

## Default S3 method:
getRotation(xyt, ...)

Arguments

xyt

an object

...

additional arguments

Value

currently no default implementation

See Also

getRotation.stppp


getRotation.stppp function

Description

Compute rotation matrix if observation window is a polygonal boundary

Usage

## S3 method for class 'stppp'
getRotation(xyt, ...)

Arguments

xyt

an object of class stppp

...

additional arguments

Value

the optimal rotation matrix and rotated data and observation window. Note it may or may not be advantageous to rotate the window, this information is displayed prior to the MALA routine when using lgcpPredict


getup function

Description

A function to get an object from a parent frame.

Usage

getup(n, lev = 1)

Arguments

n

a character string, the name of the object

lev

how many levels up the hierarchy to go (see the argument "envir" from the function "get"), default is 1.

Value

...


getZmat function

Description

A function to construct a design matrix for use with the Bayesian MCMC routines in lgcp. See the vignette "Bayesian_lgcp" for further details on how to use this function.

Usage

getZmat(
  formula,
  data,
  regionalcovariates = NULL,
  pixelcovariates = NULL,
  cellwidth,
  ext = 2,
  inclusion = "touching",
  overl = NULL
)

Arguments

formula

a formula object of the form X ~ var1 + var2 etc. The name of the dependent variable must be "X". Only accepts 'simple' formulae, such as the example given.

data

the data to be analysed (using, for example lgcpPredictSpatialPlusPars). Either an object of class ppp, or an object of class SpatialPolygonsDataFrame

regionalcovariates

an optional SpatialPolygonsDataFrame object containing covariate information, if applicable

pixelcovariates

an optional SpatialPixelsDataFrame object containing covariate information, if applicable

cellwidth

the width of computational cells

ext

integer multiple by which grid should be extended, default is 2. Generally this will not need to be altered, but if the spatial correlation decays slowly, increasing 'ext' may be necessary.

inclusion

criterion for cells being included into observation window. Either 'touching' or 'centroid'. The former, the default, includes all cells that touch the observation window, the latter includes all cells whose centroids are inside the observation window.

overl

an object of class "lgcppolyol", created by the function getpolyol. Such an object contains the FFT grid and a polygon/polygon overlay and speeds up computation massively.

Details

For example, a spatial LGCP model for the would have the form:

X(s) ~ Poisson[R(s)]

R(s) = C_A lambda(s) exp[Z(s)beta+Y(s)]

The function getZmat helps create the matrix Z. The returned object is passed onto an MCMC function, for example lgcpPredictSpatialPlusPars or lgcpPredictAggregateSpatialPlusPars. This function can also be used to help construct Z for use with lgcpPredictSpatioTemporalPlusPars and lgcpPredictMultitypeSpatialPlusPars, but these functions require a list of such objects: see the vignette "Bayesian_lgcp" for examples.

Value

a design matrix for passing on to the Bayesian MCMC functions

See Also

chooseCellwidth, getpolyol, guessinterp, addTemporalCovariates, lgcpPrior, lgcpInits, CovFunction lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars, lgcpPredictMultitypeSpatialPlusPars


getZmats function

Description

An internal function to create Z_k from an lgcpZmat object, for use in the multivariate MCMC algorithm. Not intended for general use.

Usage

getZmats(Zmat, formulaList)

Arguments

Zmat

an objecty of class "lgcpZmat"

formulaList

an object of class "formulaList"

Value

design matrices for each of the point types


GFfinalise function

Description

Generic function defining the the finalisation step for the gridFunction class of objects. The function is called invisibly within MALAlgcp and facilitates the dumping of data to disk

Usage

GFfinalise(F, ...)

Arguments

F

an object

...

additional arguments

Value

method GFfinalise

See Also

setoutput, GFinitialise, GFupdate, GFreturnvalue


GFfinalise.dump2dir function

Description

This function finalises the dumping of data to a netCDF file.

Usage

## S3 method for class 'dump2dir'
GFfinalise(F, ...)

Arguments

F

an object

...

additional arguments

Value

nothing

See Also

dump2dir, setoutput, GFinitialise, GFupdate, GFfinalise, GFreturnvalue


GFfinalise.nullFunction function

Description

This is a null function and performs no action.

Usage

## S3 method for class 'nullFunction'
GFfinalise(F, ...)

Arguments

F

an object of class dump2dir

...

additional arguments

Value

nothing

See Also

nullFunction, setoutput, GFinitialise, GFupdate, GFfinalise, GFreturnvalue


GFinitialise function

Description

Generic function defining the the initialisation step for the gridFunction class of objects. The function is called invisibly within MALAlgcp and facilitates the dumping of data to disk

Usage

GFinitialise(F, ...)

Arguments

F

an object

...

additional arguments

Value

method GFinitialise

See Also

setoutput, GFupdate, GFfinalise, GFreturnvalue


GFinitialise.dump2dir function

Description

Creates a directory (if necessary) and allocates space for a netCDF dump.

Usage

## S3 method for class 'dump2dir'
GFinitialise(F, ...)

Arguments

F

an object of class dump2dir

...

additional arguments

Value

creates initialisation file and folder

See Also

dump2dir, setoutput, GFinitialise, GFupdate, GFfinalise, GFreturnvalue


GFinitialise.nullFunction function

Description

This is a null function and performs no action.

Usage

## S3 method for class 'nullFunction'
GFinitialise(F, ...)

Arguments

F

an object of class dump2dir

...

additional arguments

Value

nothing

See Also

nullFunction, setoutput, GFinitialise, GFupdate, GFfinalise, GFreturnvalue


GFreturnvalue function

Description

Generic function defining the the returned value for the gridFunction class of objects. The function is called invisibly within MALAlgcp and facilitates the dumping of data to disk

Usage

GFreturnvalue(F, ...)

Arguments

F

an object

...

additional arguments

Value

method GFreturnvalue

See Also

setoutput, GFinitialise, GFupdate, GFfinalise


GFreturnvalue.dump2dir function

Description

This function returns the name of the directory the netCDF file was written to.

Usage

## S3 method for class 'dump2dir'
GFreturnvalue(F, ...)

Arguments

F

an object

...

additional arguments

Value

display where files have been written to

See Also

dump2dir, setoutput, GFinitialise, GFupdate, GFfinalise, GFreturnvalue


GFreturnvalue.nullFunction function

Description

This is a null function and performs no action.

Usage

## S3 method for class 'nullFunction'
GFreturnvalue(F, ...)

Arguments

F

an object of class dump2dir

...

additional arguments

Value

nothing

See Also

nullFunction, setoutput, GFinitialise, GFupdate, GFfinalise, GFreturnvalue


GFupdate function

Description

Generic function defining the the update step for the gridFunction class of objects. The function is called invisibly within MALAlgcp and facilitates the dumping of data to disk

Usage

GFupdate(F, ...)

Arguments

F

an object

...

additional arguments

Value

method GFupdate

See Also

setoutput, GFinitialise, GFfinalise, GFreturnvalue


GFupdate.dump2dir function

Description

This function gets the required information from MALAlgcp and writes the data to the netCDF file.

Usage

## S3 method for class 'dump2dir'
GFupdate(F, ...)

Arguments

F

an object

...

additional arguments

Value

saves latent field

See Also

dump2dir, setoutput, GFinitialise, GFupdate, GFfinalise, GFreturnvalue


GFupdate.nullFunction function

Description

This is a null function and performs no action.

Usage

## S3 method for class 'nullFunction'
GFupdate(F, ...)

Arguments

F

an object of class dump2dir

...

additional arguments

Value

nothing

See Also

nullFunction, setoutput, GFinitialise, GFupdate, GFfinalise, GFreturnvalue


ginhomAverage function

Description

A function to estimate the inhomogeneous pair correlation function for a spatiotemporal point process. See equation (8) of Diggle P, Rowlingson B, Su T (2005).

Usage

ginhomAverage(
  xyt,
  spatial.intensity,
  temporal.intensity,
  time.window = xyt$tlim,
  rvals = NULL,
  correction = "iso",
  suppresswarnings = FALSE,
  ...
)

Arguments

xyt

an object of class stppp

spatial.intensity

A spatialAtRisk object

temporal.intensity

A temporalAtRisk object

time.window

time interval contained in the interval xyt$tlim over which to compute average. Useful if there is a lot of data over a lot of time points.

rvals

Vector of values for the argument r at which g(r) should be evaluated (see ?pcfinhom). There is a sensible default.

correction

choice of edge correction to use, see ?pcfinhom, default is Ripley isotropic correction

suppresswarnings

Whether or not to suppress warnings generated by pcfinhom

...

other parameters to be passed to pcfinhom, see ?pcfinhom

Value

time average of inhomogenous pcf, equation (13) of Brix and Diggle 2001.

References

  1. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/

  2. Baddeley AJ, Moller J, Waagepetersen R (2000). Non-and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 54, 329-350.

  3. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  4. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

KinhomAverage, spatialparsEst, thetaEst, lambdaEst, muEst


gIntersects_pg function

Description

A function to

Usage

gIntersects_pg(spdf, grid)

Arguments

spdf

X

grid

X

Value

...


gOverlay function

Description

A function to overlay the FFT grid, a SpatialPolygons object, onto a SpatialPolygonsDataFrame object.

Usage

gOverlay(grid, spdf)

Arguments

grid

the FFT grid, a SpatialPolygons object

spdf

a SpatialPolygonsDataFrame object

Details

this code was adapted from Roger Bivand:
https://stat.ethz.ch/pipermail/r-sig-geo/2011-June/012099.html

Value

a matrix describing the features of the overlay: the originating indices of grid and spdf (all non-trivial intersections) and the area of each intersection.


GPdrv function

Description

A function to compute the first derivatives of the log target with respect to the paramters of the latent field. Not intended for general purpose use.

Usage

GPdrv(
  GP,
  prior,
  Z,
  Zt,
  eta,
  beta,
  nis,
  cellarea,
  spatial,
  gradtrunc,
  fftgrid,
  covfunction,
  d,
  eps = 1e-06
)

Arguments

GP

an object of class GPrealisation

prior

priors for the model

Z

design matirix on the FFT grid

Zt

transpose of the design matrix

eta

vector of parameters, eta

beta

vector of parameters, beta

nis

cell counts on the extended grid

cellarea

the cell area

spatial

the poisson offset

gradtrunc

gradient truncation parameter

fftgrid

an object of class FFTgrid

covfunction

the choice of covariance function, see ?CovFunction

d

matrix of toral distances

eps

the finite difference step size

Value

first derivatives of the log target at the specified paramters Y, eta and beta


GPdrv2 function

Description

A function to compute the second derivative of the log target with respect to the paramters of the latent field. Not intended for general purpose use.

Usage

GPdrv2(
  GP,
  prior,
  Z,
  Zt,
  eta,
  beta,
  nis,
  cellarea,
  spatial,
  gradtrunc,
  fftgrid,
  covfunction,
  d,
  eps = 1e-06
)

Arguments

GP

an object of class GPrealisation

prior

priors for the model

Z

design matirix on the FFT grid

Zt

transpose of the design matrix

eta

vector of parameters, eta

beta

vector of parameters, beta

nis

cell counts on the extended grid

cellarea

the cell area

spatial

the poisson offset

gradtrunc

gradient truncation parameter

fftgrid

an object of class FFTgrid

covfunction

the choice of covariance function, see ?CovFunction

d

matrix of toral distances

eps

the finite difference step size

Value

first and second derivatives of the log target at the specified paramters Y, eta and beta


GPdrv2_Multitype function

Description

A function to compute the second derivatives of the log target for the multivariate model with respect to the paramters of the latent field. Not intended for general use.

Usage

GPdrv2_Multitype(
  GPlist,
  priorlist,
  Zlist,
  Ztlist,
  etalist,
  betalist,
  nis,
  cellarea,
  spatial,
  gradtrunc,
  fftgrid,
  covfunction,
  d,
  eps = 1e-06,
  k
)

Arguments

GPlist

a list of objects of class GPrealisation

priorlist

list of priors for the model

Zlist

list of design matirices on the FFT grid

Ztlist

list of transpose design matrices

etalist

list of parameters, eta, for each realisation

betalist

clist of parameters, beta, for each realisation

nis

cell counts of each type the extended grid

cellarea

the cell area

spatial

list of poisson offsets for each type

gradtrunc

gradient truncation parameter

fftgrid

an object of class FFTgrid

covfunction

list giving the choice of covariance function for each type, see ?CovFunction

d

matrix of toral distances

eps

the finite difference step size

k

index of type for which to compute the gradient and hessian

Value

first and second derivatives of the log target for tyupe k at the specified paramters Y, eta and beta


GPlist2array function

Description

An internal function for turning a list of GPrealisation objects into an an array by a particular common element of the GPrealisation object

Usage

GPlist2array(GPlist, element)

Arguments

GPlist

an object of class GPrealisation

element

the name of the element of GPlist[[1]] (for example) to extract, e.g. "Y"

Value

an array


GPrealisation function

Description

A function to store a realisation of a spatial gaussian process for use in MCMC algorithms that include Bayesian parameter estimation. Stores not only the realisation, but also computational quantities.

Usage

GPrealisation(gamma, fftgrid, covFunction, covParameters, d)

Arguments

gamma

the transformed (white noise) realisation of the process

fftgrid

an object of class FFTgrid, see ?genFFTgrid

covFunction

an object of class function returning the spatial covariance

covParameters

an object of class CovParamaters, see ?CovParamaters

d

matrix of grid distances

Value

a realisation of a spatial Gaussian process on a regular grid


grid2spdf function

Description

A function to convert a regular (x,y) grid of centroids into a SpatialPoints object

Usage

grid2spdf(xgrid, ygrid, proj4string = CRS(as.character(NA)))

Arguments

xgrid

vector of x centroids (equally spaced)

ygrid

vector of x centroids (equally spaced)

proj4string

an optional proj4string, projection string for the grid, set using the function CRS

Value

a SpatialPolygonsDataFrame


grid2spix function

Description

A function to convert a regular (x,y) grid of centroids into a SpatialPixels object

Usage

grid2spix(xgrid, ygrid, proj4string = CRS(as.character(NA)))

Arguments

xgrid

vector of x centroids (equally spaced)

ygrid

vector of x centroids (equally spaced)

proj4string

an optional proj4string, projection string for the grid, set using the function CRS

Value

a SpatialPixels object


grid2spoly function

Description

A function to convert a regular (x,y) grid of centroids into a SpatialPolygons object

Usage

grid2spoly(xgrid, ygrid, proj4string = CRS(as.character(NA)))

Arguments

xgrid

vector of x centroids (equally spaced)

ygrid

vector of x centroids (equally spaced)

proj4string

proj 4 string: specify in the usual way

Value

a SpatialPolygons object


grid2spts function

Description

A function to convert a regular (x,y) grid of centroids into a SpatialPoints object

Usage

grid2spts(xgrid, ygrid, proj4string = CRS(as.character(NA)))

Arguments

xgrid

vector of x centroids (equally spaced)

ygrid

vector of x centroids (equally spaced)

proj4string

an optional proj4string, projection string for the grid, set using the function CRS

Value

a SpatialPoints object


gridav function

Description

A generic function for returning gridmeans objects.

Usage

gridav(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method gridav

See Also

setoutput, lgcpgrid


gridav.lgcpPredict function

Description

Accessor function for lgcpPredict objects: returns the gridmeans argument set in the output.control argument of the function lgcpPredict.

Usage

## S3 method for class 'lgcpPredict'
gridav(obj, fun = NULL, ...)

Arguments

obj

an object of class lgcpPredict

fun

an optional character vector of length 1 giving the name of a function to return Monte Carlo average of

...

additional arguments

Value

returns the output from the gridmeans option of the setoutput argument of lgcpPredict

See Also

setoutput, lgcpgrid


gridfun function

Description

A generic function for returning gridfunction objects.

Usage

gridfun(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method gridfun

See Also

setoutput, lgcpgrid


gridfun.lgcpPredict function

Description

Accessor function for lgcpPredict objects: returns the gridfunction argument set in the output.control argument of the function lgcpPredict.

Usage

## S3 method for class 'lgcpPredict'
gridfun(obj, ...)

Arguments

obj

an object of class lgcpPredict

...

additional arguments

Value

returns the output from the gridfunction option of the setoutput argument of lgcpPredict

See Also

setoutput, lgcpgrid


gridInWindow function

Description

For the grid defined by x-coordinates, xvals, and y-coordinates, yvals, and an owin object W, this function just returns a logical matrix M, whose [i,j] entry is TRUE if the point(xvals[i], yvals[j]) is inside the observation window.

Usage

gridInWindow(xvals, yvals, win, inclusion = "touching")

Arguments

xvals

x coordinates

yvals

y coordinates

win

owin object

inclusion

criterion for cells being included into observation window. Either 'touching' or 'centroid'. The former includes all cells that touch the observation window, the latter includes all cells whose centroids are inside the observation window.

Value

matrix of TRUE/FALSE, which elements of the grid are inside the observation window win


gTouches_wg function

Description

A function to

Usage

gTouches_wg(w, gri)

Arguments

w

X

gri

X

Value

...


gu function

Description

gu function

Usage

gu(u, sigma, phi, model, additionalparameters)

Arguments

u

distance

sigma

variance parameter, see Brix and Diggle (2001)

phi

scale parameter, see Brix and Diggle (2001)

model

correlation type, see ?CovarianceFct

additionalparameters

vector of additional parameters for certain classes of covariance function (eg Matern), these must be supplied in the order given in ?CovarianceFct

Value

this is just a wrapper for CovarianceFct


guessinterp function

Description

A function to guess provisional interpolational methods to variables in a data frame. Numeric variables are assigned interpolation by areal weighted mean (see below); factor, character and other types of variable are assigned interpolation by majority vote (see below). Not that the interpolation type ArealWeightedSum is not assigned automatically.

Usage

guessinterp(df)

Arguments

df

a data frame

Details

The three types of interpolation method employed in the package lgcp are:

  1. 'Majority' The interpolated value corresponds to the value of the covariate occupying the largest area of the computational cell.

  2. 'ArealWeightedMean' The interpolated value corresponds to the mean of all covariate values contributing to the computational cell weighted by their respective areas.

  3. 'ArealWeightedSum' The interpolated value is the sum of all contributing covariates weighed by the proportion of area with respect to the covariate polygons. For example, suppose region A has the same area as a computational grid cell and has 500 inhabitants. If that region occupies half of a computational grid cell, then this interpolation type assigns 250 inhabitants from A to the computational grid cell.

Value

the data frame, but with attributes describing the interpolation method for each variable

See Also

chooseCellwidth, getpolyol, getZmat, addTemporalCovariates, lgcpPrior, lgcpInits, CovFunction lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars, lgcpPredictMultitypeSpatialPlusPars

Examples

## Not run: spdf a SpatialPolygonsDataFrame
## Not run: spdf@data <- guessinterp(spdf@data)

generic hasNext method

Description

test if an iterator has any more values to go

Usage

hasNext(obj)

Arguments

obj

an iterator


hasNext.iter function

Description

method for iter objects test if an iterator has any more values to go

Usage

## S3 method for class 'iter'
hasNext(obj)

Arguments

obj

an iterator


hvals function

Description

Generic function to return the values of the proposal scaling hh in the MCMC algorithm.

Usage

hvals(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method hvals


hvals.lgcpPredict function

Description

Accessor function returning the value of hh, the MALA proposal scaling constant over the iterations of the algorithm for objects of class lgcpPredict

Usage

## S3 method for class 'lgcpPredict'
hvals(obj, ...)

Arguments

obj

an object of class lgcpPredict

...

additional arguments

Value

returns the values of h taken during the progress of the algorithm

See Also

lgcpPredict


identify.lgcpPredict function

Description

Identifies the indices of grid cells on plots of lgcpPredict objects. Can be used to identify a small number of cells for further information eg trace or autocorrelation plots (provided data has been dumped to disk). On calling identify(lg) for example (see code below), the user can click multiply with the left mouse button on the graphics device; once the user has selected all points of interest, the right button is pressed, which returns them.

Usage

## S3 method for class 'lgcpPredict'
identify(x, ...)

Arguments

x

an object of class lgcpPredict

...

additional arguments

Value

a 2 x n matrix containing the grid indices of the points of interest, where n is the number of points selected via the mouse.

See Also

lgcpPredict, loc2poly

Examples

## Not run: plot(lg) # lg an lgcpPredict object
## Not run: pt_indices <- identify(lg)

identifygrid function

Description

Identifies the indices of grid cells on plots of objects.

Usage

identifygrid(x, y)

Arguments

x

the x grid centroids

y

the y grid centroids

Value

a 2 x n matrix containing the grid indices of the points of interest, where n is the number of points selected via the mouse.

See Also

lgcpPredict, loc2poly, identify.lgcpPredict


image.lgcpgrid function

Description

Produce an image plot of an lgcpgrid object.

Usage

## S3 method for class 'lgcpgrid'
image(x, sel = 1:x$len, ask = TRUE, ...)

Arguments

x

an object of class lgcpgrid

sel

vector of integers between 1 and grid$len: which grids to plot. Default NULL, in which case all grids are plotted.

ask

logical; if TRUE the user is asked before each plot

...

other arguments

Value

grid plotting

See Also

lgcpgrid.list, lgcpgrid.array, as.list.lgcpgrid, print.lgcpgrid, summary.lgcpgrid, quantile.lgcpgrid, plot.lgcpgrid


initialiseAMCMC function

Description

A generic to be used for the purpose of user-defined adaptive MCMC schemes, initialiseAMCMC tells the MALA algorithm which value of h to use first. See lgcp vignette, codevignette("lgcp"), for further details on writing adaptive MCMC schemes.

Usage

initialiseAMCMC(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method intialiseAMCMC

See Also

initialiseAMCMC.constanth, initialiseAMCMC.andrieuthomsh


initaliseAMCMC.andrieuthomsh function

Description

Initialises the andrieuthomsh adaptive scheme.

Usage

## S3 method for class 'andrieuthomsh'
initialiseAMCMC(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

initial h for scheme

References

  1. Andrieu C, Thoms J (2008). A tutorial on adaptive MCMC. Statistics and Computing, 18(4), 343-373.

  2. Robbins H, Munro S (1951). A Stochastic Approximation Methods. The Annals of Mathematical Statistics, 22(3), 400-407.

  3. Roberts G, Rosenthal J (2001). Optimal Scaling for Various Metropolis-Hastings Algorithms. Statistical Science, 16(4), 351-367.

See Also

andrieuthomsh


initaliseAMCMC.constanth function

Description

Initialises the constanth adaptive scheme.

Usage

## S3 method for class 'constanth'
initialiseAMCMC(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

initial h for scheme

See Also

constanth


integerise function

Description

Generic function for converting the time variable of an stppp object.

Usage

integerise(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method integerise

See Also

integerise.stppp


integerise.mstppp function

Description

Function for converting the times and time limits of an mstppp object into integer values.

Usage

## S3 method for class 'mstppp'
integerise(obj, ...)

Arguments

obj

an mstppp object

...

additional arguments

Value

The mstppp object, but with integerised times.


integerise.stppp function

Description

Function for converting the times and time limits of an stppp object into integer values. Do this before estimating mu(t), and hence before creating the temporalAtRisk object. Not taking this step is possible in lgcp, but can cause minor complications connected with the scaling of mu(t).

Usage

## S3 method for class 'stppp'
integerise(obj, ...)

Arguments

obj

an stppp object

...

additional arguments

Value

The stppp object, but with integerised times.


intens function

Description

Generic function to return the Poisson Intensity.

Usage

intens(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method intens

See Also

lgcpPredict, intens.lgcpPredict


intens.lgcpPredict function

Description

Accessor function returning the Poisson intensity as an lgcpgrid object.

Usage

## S3 method for class 'lgcpPredict'
intens(obj, ...)

Arguments

obj

an lgcpPredict object

...

additional arguments

Value

the cell-wise mean Poisson intensity, as computed by MCMC.

See Also

lgcpPredict


intens.lgcpSimMultitypeSpatialPlusParameters function

Description

A function to return the cellwise Poisson intensity used during in constructing the simulated data.

Usage

"intens(obj, ...)"

Arguments

obj

an object of class lgcpSimMultitypeSpatialPlusParameters

...

other parameters

Value

the Poisson intensity


intens.lgcpSimSpatialPlusParameters function

Description

A function to return the cellwise Poisson intensity used during in constructing the simulated data.

Usage

## S3 method for class 'lgcpSimSpatialPlusParameters'
intens(obj, ...)

Arguments

obj

an object of class lgcpSimSpatialPlusParameters

...

other parameters

Value

the Poisson intensity


interptypes function

Description

A function to return the types of covariate interpolation available

Usage

interptypes()

Details

The three types of interpolation method employed in the package lgcp are:

  1. 'Majority' The interpolated value corresponds to the value of the covariate occupying the largest area of the computational cell.

  2. 'ArealWeightedMean' The interpolated value corresponds to the mean of all covariate values contributing to the computational cell weighted by their respective areas.

  3. 'ArealWeightedSum' The interpolated value is the sum of all contributing covariates weighed by the proportion of area with respect to the covariate polygons. For example, suppose region A has the same area as a computational grid cell and has 500 inhabitants. If that region occupies half of a computational grid cell, then this interpolation type assigns 250 inhabitants from A to the computational grid cell.

Value

character string of available interpolation types


inversebase function

Description

A function to compute the base of the inverse os a block circulant matrix, given the base of the matrix

Usage

inversebase(x)

Arguments

x

the base matrix of a block circulant matrix

Value

the base matrix of the inverse of the circulant matrix


is this a burn-in iteration?

Description

if this mcmc iteration is in the burn-in period, return TRUE

Usage

is.burnin(obj)

Arguments

obj

an mcmc iterator

Value

TRUE or FALSE


is.pow2 function

Description

Tests whether a number id

Usage

is.pow2(num)

Arguments

num

a numeric

Value

logical: is num a power of 2?

Examples

is.pow2(128)  # TRUE
is.pow2(64.9) # FALSE

do we retain this iteration?

Description

if this mcmc iteration is one not thinned out, this is true

Usage

is.retain(obj)

Arguments

obj

an mcmc iterator

Value

TRUE or FALSE


is.SPD function

Description

A function to compute whether a block circulant matrix is symmetric positive definite (SPD), given its base matrix.

Usage

is.SPD(base)

Arguments

base

base matrix of a block circulant matrix

Value

logical, whether the circulant matrix the base represents is SPD


iteration number

Description

within a loop, this is the iteration number we are currently doing.

Usage

iteration(obj)

Arguments

obj

an mcmc iterator

Details

get the iteration number

Value

integer iteration number, starting from 1.


KinhomAverage function

Description

A function to estimate the inhomogeneous K function for a spatiotemporal point process. The method of computation is similar to ginhomAverage, see eq (8) Diggle P, Rowlingson B, Su T (2005) to see how this is computed.

Usage

KinhomAverage(
  xyt,
  spatial.intensity,
  temporal.intensity,
  time.window = xyt$tlim,
  rvals = NULL,
  correction = "iso",
  suppresswarnings = FALSE
)

Arguments

xyt

an object of class stppp

spatial.intensity

A spatialAtRisk object

temporal.intensity

A temporalAtRisk object

time.window

time interval contained in the interval xyt$tlim over which to compute average. Useful if there is a lot of data over a lot of time points.

rvals

Vector of values for the argument r at which the inhmogeneous K function should be evaluated (see ?Kinhom). There is a sensible default.

correction

choice of edge correction to use, see ?Kinhom, default is Ripley isotropic correction

suppresswarnings

Whether or not to suppress warnings generated by Kinhom

Value

time average of inhomogenous K function.

References

  1. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/

  2. Baddeley AJ, Moller J, Waagepetersen R (2000). Non-and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 54, 329-350.

  3. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  4. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

ginhomAverage, spatialparsEst, thetaEst, lambdaEst, muEst


lambdaEst function

Description

Generic function for estimating bivariate densities by eye. Specific methods exist for stppp objects and ppp objects.

Usage

lambdaEst(xyt, ...)

Arguments

xyt

an object

...

additional arguments

Value

method lambdaEst

See Also

lambdaEst.stppp, lambdaEst.ppp


lambdaEst.ppp function

Description

A tool for the visual estimation of lambda(s) via a 2 dimensional smoothing of the case locations. For parameter estimation, the alternative is to estimate lambda(s) by some other means, convert it into a spatialAtRisk object and then into a pixel image object using the build in coercion methods, this im object can then be fed to ginhomAverage, KinhomAverage or thetaEst for instance.

Usage

## S3 method for class 'ppp'
lambdaEst(xyt, weights = c(), edge = TRUE, bw = NULL, ...)

Arguments

xyt

object of class stppp

weights

Optional vector of weights to be attached to the points. May include negative values. See ?density.ppp.

edge

Logical flag: if TRUE, apply edge correction. See ?density.ppp.

bw

optional bandwidth. Set to NULL by default, which calls teh resolve.2D.kernel function for computing an initial value of this

...

arguments to be passed to plot

Details

The function lambdaEst is built directly on the density.ppp function and as such, implements a bivariate Gaussian smoothing kernel. The bandwidth is initially that which is automatically chosen by the default method of density.ppp. Since image plots of these kernel density estimates may not have appropriate colour scales, the ability to adjust this is given with the slider 'colour adjustment'. With colour adjustment set to 1, the default image.plot for the equivalent pixel image object is shown and for values less than 1, the colour scheme is more spread out, allowing the user to get a better feel for the density that is being fitted. NOTE: colour adjustment does not affect the returned density and the user should be aware that the returned density will 'look like' that displayed when colour adjustment is set equal to 1.

Value

This is an rpanel function for visual choice of lambda(s), the output is a variable, varname, with the density *per unit time* the variable varname can be fed to the function ginhomAverage or KinhomAverage as the argument density (see for example ?ginhomAverage), or into the function thetaEst as the argument spatial.intensity.

References

  1. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/

  2. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  3. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

spatialAtRisk, ginhomAverage, KinhomAverage, spatialparsEst, thetaEst, muEst


lambdaEst.stppp function

Description

A tool for the visual estimation of lambda(s) via a 2 dimensional smoothing of the case locations. For parameter estimation, the alternative is to estimate lambda(s) by some other means, convert it into a spatialAtRisk object and then into a pixel image object using the build in coercion methods, this im object can then be fed to ginhomAverage, KinhomAverage or thetaEst for instance.

Usage

## S3 method for class 'stppp'
lambdaEst(xyt, weights = c(), edge = TRUE, bw = NULL, ...)

Arguments

xyt

object of class stppp

weights

Optional vector of weights to be attached to the points. May include negative values. See ?density.ppp.

edge

Logical flag: if TRUE, apply edge correction. See ?density.ppp.

bw

optional bandwidth. Set to NULL by default, which calls teh resolve.2D.kernel function for computing an initial value of this

...

arguments to be passed to plot

Details

The function lambdaEst is built directly on the density.ppp function and as such, implements a bivariate Gaussian smoothing kernel. The bandwidth is initially that which is automatically chosen by the default method of density.ppp. Since image plots of these kernel density estimates may not have appropriate colour scales, the ability to adjust this is given with the slider 'colour adjustment'. With colour adjustment set to 1, the default image.plot for the equivalent pixel image object is shown and for values less than 1, the colour scheme is more spread out, allowing the user to get a better feel for the density that is being fitted. NOTE: colour adjustment does not affect the returned density and the user should be aware that the returned density will 'look like' that displayed when colour adjustment is set equal to 1.

Value

This is an rpanel function for visual choice of lambda(s), the output is a variable, varname, with the density *per unit time* the variable varname can be fed to the function ginhomAverage or KinhomAverage as the argument density (see for example ?ginhomAverage), or into the function thetaEst as the argument spatial.intensity.

References

  1. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/

  2. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  3. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

spatialAtRisk, ginhomAverage, KinhomAverage, spatialparsEst, thetaEst, muEst


lgcpbayes function

Description

Display the introductory vignette for the lgcp package.

Usage

lgcpbayes()

Value

displays the vignette by calling browseURL


lgcpForecast function

Description

Function to produce forecasts for the mean field YY at times beyond the last time point in the analysis (given by the argument T in the function lgcpPredict).

Usage

lgcpForecast(
  lg,
  ptimes,
  spatial.intensity,
  temporal.intensity,
  inclusion = "touching"
)

Arguments

lg

an object of class lgcpPredict

ptimes

vector of time points for prediction. Must start strictly after last inferred time point.

spatial.intensity

the fixed spatial component: an object of that can be coerced to one of class spatialAtRisk

temporal.intensity

the fixed temporal component: either a numeric vector, or a function that can be coerced into an object of class temporalAtRisk

inclusion

criterion for cells being included into observation window. Either 'touching' or 'centroid'. The former includes all cells that touch the observation window, the latter includes all cells whose centroids are inside the observation window.

Value

forcasted relative risk, Poisson intensities and Y values over grid, together with approximate variance.

References

Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

See Also

lgcpPredict


lgcpgrid function

Description

Generic function for the hadling of list objects where each element of the list is a matrix. Each matrix is assumed to have the same dimension. Such objects arise from the various routines in the package lgcp.

Usage

lgcpgrid(grid, ...)

Arguments

grid

a list object with each member of the list being a numeric matrix, each matrix having the same dimension

...

other arguments

Details

lgcpgrid objects are list objects with names len, nrow, ncol, grid, xvals, yvals, zvals. The first three elements of the list store the dimension of the object, the fourth element, grid, is itself a list object consisting of matrices in which the data is stored. The last three arguments can be used to give what is effectively a 3 dimensional array a physical reference.

For example, the mean of Y from a call to lgcpPredict, obj$y.mean for example, is stored in an lgcpgrid object. If several time points have been stored in the call to lgcpPredict, then the grid element of the lgcpgrid object contains the output for each of the time points in succession. So the first element, obj$y.mean$grid[[1]],contains the output from the first time point and so on.

Value

method lgcpgrid

See Also

lgcpgrid.list, lgcpgrid.array, lgcpgrid.matrix


lgcpgrid.array function

Description

Creates an lgcp grid object from an 3-dimensional array.

Usage

## S3 method for class 'array'
lgcpgrid(
  grid,
  xvals = 1:dim(grid)[1],
  yvals = 1:dim(grid)[2],
  zvals = 1:dim(grid)[3],
  ...
)

Arguments

grid

a three dimensional array object

xvals

optional vector of x-coordinates associated to grid. By default, this is the cell index in the x direction.

yvals

optional vector of y-coordinates associated to grid. By default, this is the cell index in the y direction.

zvals

optional vector of z-coordinates (time) associated to grid. By default, this is the cell index in the z direction.

...

other arguments

Value

an object of class lgcpgrid

See Also

lgcpgrid.list, as.list.lgcpgrid, print.lgcpgrid, summary.lgcpgrid, quantile.lgcpgrid, image.lgcpgrid, plot.lgcpgrid


lgcpgrid.list function

Description

Creates an lgcpgrid object from a list object plus some optional coordinates. Note that each element of the list should be a matrix, and that each matrix should have the same dimension.

Usage

## S3 method for class 'list'
lgcpgrid(
  grid,
  xvals = 1:dim(grid[[1]])[1],
  yvals = 1:dim(grid[[1]])[2],
  zvals = 1:length(grid),
  ...
)

Arguments

grid

a list object with each member of the list being a numeric matrix, each matrix having the same dimension

xvals

optional vector of x-coordinates associated to grid. By default, this is the cell index in the x direction.

yvals

optional vector of y-coordinates associated to grid. By default, this is the cell index in the y direction.

zvals

optional vector of z-coordinates (time) associated to grid. By default, this is the cell index in the z direction.

...

other arguments

Value

an object of class lgcpgrid

See Also

lgcpgrid.array, as.list.lgcpgrid, print.lgcpgrid, summary.lgcpgrid, quantile.lgcpgrid, image.lgcpgrid, plot.lgcpgrid


lgcpgrid.matrix function

Description

Creates an lgcp grid object from an 2-dimensional matrix.

Usage

## S3 method for class 'matrix'
lgcpgrid(grid, xvals = 1:nrow(grid), yvals = 1:ncol(grid), ...)

Arguments

grid

a three dimensional array object

xvals

optional vector of x-coordinates associated to grid. By default, this is the cell index in the x direction.

yvals

optional vector of y-coordinates associated to grid. By default, this is the cell index in the y direction.

...

other arguments

Value

an object of class lgcpgrid

See Also

lgcpgrid.list, as.list.lgcpgrid, print.lgcpgrid, summary.lgcpgrid, quantile.lgcpgrid, image.lgcpgrid, plot.lgcpgrid


lgcpInits function

Description

A function to declare initial values for a run of the MCMC routine. If specified, the MCMC algorithm will calibrate the proposal density using these as provisional estimates of the parameters.

Usage

lgcpInits(etainit = NULL, betainit = NULL)

Arguments

etainit

a vector, the initial value of eta to use

betainit

a vector, the initial value of beta to use, this vector must have names the same as the variable names in the formula in use, and in the same order.

Details

It is not necessary to supply intial values to the MCMC routine, by default the functions lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars and lgcpPredictMultitypeSpatialPlusPars will initialise the MCMC as follows. For eta, if no initial value is specified then the initial value of eta in the MCMC run will be the prior mean. For beta, if no initial value is specified then the initial value of beta in the MCMC run will be estimated from an overdispersed Poisson fit to the cell counts, ignoring spatial correlation. The user cannot specify an initial value of Y (or equivalently Gamma), as a sensible value is chosen by the MCMC function.

A secondary function of specifying initial values is to help design the MCMC proposal matrix, which is based on these initial estimates.

Value

an object of class lgcpInits used in the MCMC routine.

See Also

chooseCellwidth, getpolyol, guessinterp, getZmat, addTemporalCovariates, lgcpPrior, CovFunction, lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars, lgcpPredictMultitypeSpatialPlusPars

Examples

## Not run: INITS <- lgcpInits(etainit=log(c(sqrt(1.5),275)), betainit=NULL)

lgcppars function

Description

A function for setting the parameters sigma, phi and theta for lgcpPredict. Note that the returned set of parameters also features mu=-0.5*sigma^2, gives mean(exp(Y)) = 1.

Usage

lgcppars(sigma = NULL, phi = NULL, theta = NULL, mu = NULL, beta = NULL)

Arguments

sigma

sigma parameter

phi

phi parameter

theta

this is 'beta' parameter in Brix and Diggle (2001)

mu

the mean of the latent field, if equal to NULL, this is set to -sigma^2/2

beta

ONLY USED IN case where there is covariate information.

See Also

lgcpPredict


lgcpPredict function

Description

The function lgcpPredict performs spatiotemporal prediction for log-Gaussian Cox Processes

Usage

lgcpPredict(
  xyt,
  T,
  laglength,
  model.parameters = lgcppars(),
  spatial.covmodel = "exponential",
  covpars = c(),
  cellwidth = NULL,
  gridsize = NULL,
  spatial.intensity,
  temporal.intensity,
  mcmc.control,
  output.control = setoutput(),
  missing.data.areas = NULL,
  autorotate = FALSE,
  gradtrunc = Inf,
  ext = 2,
  inclusion = "touching"
)

Arguments

xyt

a spatio-temporal point pattern object, see ?stppp

T

time point of interest

laglength

specifies lag window, so that data from and including time (T-laglength) to time T is used in the MALA algorithm

model.parameters

values for parameters, see ?lgcppars

spatial.covmodel

correlation type see ?CovarianceFct

covpars

vector of additional parameters for certain classes of covariance function (eg Matern), these must be supplied in the order given in ?CovarianceFct

cellwidth

width of grid cells on which to do MALA (grid cells are square) in same units as observation window. Note EITHER gridsize OR cellwidth must be specified.

gridsize

size of output grid required. Note EITHER gridsize OR cellwidthe must be specified.

spatial.intensity

the fixed spatial component: an object of that can be coerced to one of class spatialAtRisk

temporal.intensity

the fixed temporal component: either a numeric vector, or a function that can be coerced into an object of class temporalAtRisk

mcmc.control

MCMC paramters, see ?mcmcpars

output.control

output choice, see ?setoutput

missing.data.areas

a list of owin objects (of length laglength+1) which has xyt$window as a base window, but with polygonal holes specifying spatial areas where there is missing data.

autorotate

logical: whether or not to automatically do MCMC on optimised, rotated grid.

gradtrunc

truncation for gradient vector equal to H parameter Moller et al 1998 pp 473. Default is Inf, which means no gradient truncation. Set to NULL to estimate this automatically (though note that this may not necessarily be a good choice). The default seems to work in most settings.

ext

integer multiple by which grid should be extended, default is 2. Generally this will not need to be altered, but if the spatial correlation decays very slowly (compared withe the size of hte observation window), increasing 'ext' may be necessary.

inclusion

criterion for cells being included into observation window. Either 'touching' or 'centroid'. The former includes all cells that touch the observation window, the latter includes all cells whose centroids are inside the observation window. further notes on autorotate argument: If set to TRUE, and the argument spatial is not NULL, then the argument spatial must be computed in the original frame of reference (ie NOT in the rotated frame). Autorotate performs bilinear interpolation (via interp.im) on an inverse transformed grid; if there is no computational advantage in doing this, a warning message will be issued. Note that best accuracy is achieved by manually rotating xyt and then computing spatial on the transformed xyt and finally feeding these in as arguments to the function lgcpPredict. By default autorotate is set to FALSE.

Details

The following is a mathematical description of a log-Gaussian Cox Process, it is best viewed in the pdf version of the manual.

Let Y(s,t)\mathcal Y(s,t) be a spatiotemporal Gaussian process, WR2W\subset R^2 be an observation window in space and TR0T\subset R_{\geq 0} be an interval of time of interest. Cases occur at spatio-temporal positions (x,t)W×T(x,t) \in W \times T according to an inhomogeneous spatio-temporal Cox process, i.e. a Poisson process with a stochastic intensity R(x,t)R(x,t), The number of cases, XS,[t1,t2]X_{S,[t_1,t_2]}, arising in any SWS \subseteq W during the interval [t1,t2]T[t_1,t_2]\subseteq T is then Poisson distributed conditional on R()R(\cdot),

XS,[t1,t2]Poisson{St1t2R(s,t)dsdt}X_{S,[t_1,t_2]} \sim \mbox{Poisson}\left\{\int_S\int_{t_1}^{t_2} R(s,t)d sd t\right\}

Following Brix and Diggle (2001) and Diggle et al (2005), the intensity is decomposed multiplicatively as

R(s,t)=λ(s)μ(t)exp{Y(s,t)}.R(s,t) = \lambda(s)\mu(t)\exp\{\mathcal Y(s,t)\}.

In the above, the fixed spatial component, λ:R2R0\lambda:R^2\mapsto R_{\geq 0}, is a known function, proportional to the population at risk at each point in space and scaled so that

Wλ(s)ds=1,\int_W\lambda(s)d s=1,

whilst the fixed temporal component, μ:R0R0\mu:R_{\geq 0}\mapsto R_{\geq 0}, is also a known function with

μ(t)δt=E[XW,δt],\mu(t) \delta t = E[X_{W,\delta t}],

for tt in a small interval of time, δt\delta t, over which the rate of the process over WW can be considered constant.

NOTE: the xyt stppp object can be recorded in continuous time, but for the purposes of prediciton, discretisation must take place. For the time dimension, this is achieved invisibly by as.integer(xyt$t) and as.integer(xyt$tlim). Therefore, before running an analysis please make sure that this is commensurate with the physical inerpretation and requirements of your output. The spatial discretisation is chosen with the argument cellwidth (or gridsize). If the chosen discretisation in time and space is too coarse for a given set of parameters (sigma, phi and theta) then the proper correlation structures implied by the model will not be captured in the output.

Before calling this function, the user must decide on the time point of interest, the number of intervals of data to use, the parameters, spatial covariance model, spatial discretisation, fixed spatial (λ(s)\lambda(s)) and temporal (μ(t)\mu(t)) components, mcmc parameters, and whether or not any output is required.

Value

the results of fitting the model in an object of class lgcpPredict

References

  1. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/

  2. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  3. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

  4. Wood ATA, Chan G (1994). Simulation of Stationary Gaussian Processes in [0,1]d. Journal of Computational and Graphical Statistics, 3(4), 409-432.

  5. Moller J, Syversveen AR, Waagepetersen RP (1998). Log Gaussian Cox Processes. Scandinavian Journal of Statistics, 25(3), 451-482.

See Also

KinhomAverage, ginhomAverage, lambdaEst, muEst, spatialparsEst, thetaEst, spatialAtRisk, temporalAtRisk, lgcppars, CovarianceFct, mcmcpars, setoutput print.lgcpPredict, xvals.lgcpPredict, yvals.lgcpPredict, plot.lgcpPredict, meanfield.lgcpPredict, rr.lgcpPredict, serr.lgcpPredict, intens.lgcpPredict, varfield.lgcpPredict, gridfun.lgcpPredict, gridav.lgcpPredict, hvals.lgcpPredict, window.lgcpPredict, mcmctrace.lgcpPredict, plotExceed.lgcpPredict, quantile.lgcpPredict, identify.lgcpPredict, expectation.lgcpPredict, extract.lgcpPredict, showGrid.lgcpPredict


lgcpPredictAggregated function

Description

The function lgcpPredict performs spatiotemporal prediction for log-Gaussian Cox Processes for point process data where counts have been aggregated to the regional level. This is achieved by imputation of the regional counts onto a spatial continuum; if something is known about the underlying spatial density of cases, then this information can be added to improve the quality of the imputation, without this, the counts are distributed uniformly within regions.

Usage

lgcpPredictAggregated(
  app,
  popden = NULL,
  T,
  laglength,
  model.parameters = lgcppars(),
  spatial.covmodel = "exponential",
  covpars = c(),
  cellwidth = NULL,
  gridsize = NULL,
  spatial.intensity,
  temporal.intensity,
  mcmc.control,
  output.control = setoutput(),
  autorotate = FALSE,
  gradtrunc = NULL,
  n = 100,
  dmin = 0,
  check = TRUE
)

Arguments

app

a spatio-temporal aggregated point pattern object, see ?stapp

popden

a spatialAtRisk object of class 'fromFunction' describing the population density, if known. Default is NULL, which gives a uniform density on each region.

T

time point of interest

laglength

specifies lag window, so that data from and including time (T-laglength) to time T is used in the MALA algorithm

model.parameters

values for parameters, see ?lgcppars

spatial.covmodel

correlation type see ?CovarianceFct

covpars

vector of additional parameters for certain classes of covariance function (eg Matern), these must be supplied in the order given in ?CovarianceFct

cellwidth

width of grid cells on which to do MALA (grid cells are square). Note EITHER gridsize OR cellwidthe must be specified.

gridsize

size of output grid required. Note EITHER gridsize OR cellwidthe must be specified.

spatial.intensity

the fixed spatial component: an object of that can be coerced to one of class spatialAtRisk

temporal.intensity

the fixed temporal component: either a numeric vector, or a function that can be coerced into an object of class temporalAtRisk

mcmc.control

MCMC paramters, see ?mcmcpars

output.control

output choice, see ?setoutput

autorotate

logical: whether or not to automatically do MCMC on optimised, rotated grid.

gradtrunc

truncation for gradient vector equal to H parameter Moller et al 1998 pp 473. Set to NULL to estimate this automatically (default). Set to zero for no gradient truncation.

n

parameter for as.stppp. If popden is NULL, then this parameter controls the resolution of the uniform. Otherwise if popden is of class 'fromFunction', it controls the size of the imputation grid used for sampling. Default is 100.

dmin

parameter for as.stppp. If any reginal counts are missing, then a set of polygonal 'holes' in the observation window will be computed for each. dmin is the parameter used to control the simplification of these holes (see ?simplify.owin). default is zero.

check

logical parameter for as.stppp. If any reginal counts are missing, then roughly speaking, check specifies whether to check the 'holes'. further notes on autorotate argument: If set to TRUE, and the argument spatial is not NULL, then the argument spatial must be computed in the original frame of reference (ie NOT in the rotated frame). Autorotate performs bilinear interpolation (via interp.im) on an inverse transformed grid; if there is no computational advantage in doing this, a warning message will be issued. Note that best accuracy is achieved by manually rotating xyt and then computing spatial on the transformed xyt and finally feeding these in as arguments to the function lgcpPredict. By default autorotate is set to FALSE.

Details

The following is a mathematical description of a log-Gaussian Cox Process, it is best viewed in the pdf version of the manual.

Let Y(s,t)\mathcal Y(s,t) be a spatiotemporal Gaussian process, WR2W\subset R^2 be an observation window in space and TR0T\subset R_{\geq 0} be an interval of time of interest. Cases occur at spatio-temporal positions (x,t)W×T(x,t) \in W \times T according to an inhomogeneous spatio-temporal Cox process, i.e. a Poisson process with a stochastic intensity R(x,t)R(x,t), The number of cases, XS,[t1,t2]X_{S,[t_1,t_2]}, arising in any SWS \subseteq W during the interval [t1,t2]T[t_1,t_2]\subseteq T is then Poisson distributed conditional on R()R(\cdot),

XS,[t1,t2]Poisson{St1t2R(s,t)dsdt}X_{S,[t_1,t_2]} \sim \mbox{Poisson}\left\{\int_S\int_{t_1}^{t_2} R(s,t)d sd t\right\}

Following Brix and Diggle (2001) and Diggle et al (2005), the intensity is decomposed multiplicatively as

R(s,t)=λ(s)μ(t)exp{Y(s,t)}.R(s,t) = \lambda(s)\mu(t)\exp\{\mathcal Y(s,t)\}.

In the above, the fixed spatial component, λ:R2R0\lambda:R^2\mapsto R_{\geq 0}, is a known function, proportional to the population at risk at each point in space and scaled so that

Wλ(s)ds=1,\int_W\lambda(s)d s=1,

whilst the fixed temporal component, μ:R0R0\mu:R_{\geq 0}\mapsto R_{\geq 0}, is also a known function with

μ(t)δt=E[XW,δt],\mu(t) \delta t = E[X_{W,\delta t}],

for tt in a small interval of time, δt\delta t, over which the rate of the process over WW can be considered constant.

NOTE: the xyt stppp object can be recorded in continuous time, but for the purposes of prediciton, discretisation must take place. For the time dimension, this is achieved invisibly by as.integer(xyt$t) and as.integer(xyt$tlim). Therefore, before running an analysis please make sure that this is commensurate with the physical inerpretation and requirements of your output. The spatial discretisation is chosen with the argument cellwidth (or gridsize). If the chosen discretisation in time and space is too coarse for a given set of parameters (sigma, phi and theta) then the proper correlation structures implied by the model will not be captured in the output.

Before calling this function, the user must decide on the time point of interest, the number of intervals of data to use, the parameters, spatial covariance model, spatial discretisation, fixed spatial (λ(s)\lambda(s)) and temporal (μ(t)\mu(t)) components, mcmc parameters, and whether or not any output is required.

Value

the results of fitting the model in an object of class lgcpPredict

References

  1. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/

  2. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  3. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

  4. Wood ATA, Chan G (1994). Simulation of Stationary Gaussian Processes in [0,1]d. Journal of Computational and Graphical Statistics, 3(4), 409-432.

  5. Moller J, Syversveen AR, Waagepetersen RP (1998). Log Gaussian Cox Processes. Scandinavian Journal of Statistics, 25(3), 451-482.

See Also

KinhomAverage, ginhomAverage, lambdaEst, muEst, spatialparsEst, thetaEst, spatialAtRisk, temporalAtRisk, lgcppars, CovarianceFct, mcmcpars, setoutput print.lgcpPredict, xvals.lgcpPredict, yvals.lgcpPredict, plot.lgcpPredict, meanfield.lgcpPredict, rr.lgcpPredict, serr.lgcpPredict, intens.lgcpPredict, varfield.lgcpPredict, gridfun.lgcpPredict, gridav.lgcpPredict, hvals.lgcpPredict, window.lgcpPredict, mcmctrace.lgcpPredict, plotExceed.lgcpPredict, quantile.lgcpPredict, identify.lgcpPredict, expectation.lgcpPredict, extract.lgcpPredict, showGrid.lgcpPredict


lgcpPredictAggregateSpatialPlusPars function

Description

A function to deliver fully Bayesian inference for the aggregated spatial log-Gaussian Cox process.

Usage

lgcpPredictAggregateSpatialPlusPars(
  formula,
  spdf,
  Zmat = NULL,
  overlayInZmat = FALSE,
  model.priors,
  model.inits = lgcpInits(),
  spatial.covmodel,
  cellwidth = NULL,
  poisson.offset = NULL,
  mcmc.control,
  output.control = setoutput(),
  gradtrunc = Inf,
  ext = 2,
  Nfreq = 101,
  inclusion = "touching",
  overlapping = FALSE,
  pixwts = NULL
)

Arguments

formula

a formula object of the form X ~ var1 + var2 etc. The name of the dependent variable must be "X". Only accepts 'simple' formulae, such as the example given.

spdf

a SpatialPolygonsDataFrame object with variable "X", the event counts per region.

Zmat

design matrix Z (see below) constructed with getZmat

overlayInZmat

if the covariate information in Zmat also comes from spdf, set to TRUE to avoid replicating the overlay operations. Default is FALSE.

model.priors

model priors, set using lgcpPrior

model.inits

model initial values. The default is NULL, in which case lgcp will use the prior mean to initialise eta and beta will be initialised from an oversispersed glm fit to the data. Otherwise use lgcpInits to specify.

spatial.covmodel

choice of spatial covariance function. See ?CovFunction

cellwidth

the width of computational cells

poisson.offset

A SpatialAtRisk object defining lambda (see below)

mcmc.control

MCMC paramters, see ?mcmcpars

output.control

output choice, see ?setoutput

gradtrunc

truncation for gradient vector equal to H parameter Moller et al 1998 pp 473. Default is Inf, which means no gradient truncation, which seems to work in most settings.

ext

integer multiple by which grid should be extended, default is 2. Generally this will not need to be altered, but if the spatial correlation decays slowly, increasing 'ext' may be necessary.

Nfreq

the sampling frequency for the cell counts. Default is every 101 iterations.

inclusion

criterion for cells being included into observation window. Either 'touching' or 'centroid'. The former, the default, includes all cells that touch the observation window, the latter includes all cells whose centroids are inside the observation window.

overlapping

logical does spdf contain overlapping polygons? Default is FALSE. If set to TRUE, spdf can contain a variable named 'sintens' that gives the sampling intensity for each polygon; the default is to assume that cases are evenly split between overlapping regions.

pixwts

optional matrix of dimension (NM) x (number of regions in spdf) where M, N are the number of cells in the x and y directions (not the number of cells on the Fourier grid, rather the number of cell on the output grid). The ith row of this matrix are the probabilities that for the ith grid cell (in the same order as expand.grid(mcens,ncens)) a case belongs to each of the regions in spdf. Including this object overrides 'sintens' in the overlapping option above.

Details

See the vignette "Bayesian_lgcp" for examples of this code in use.

In this case, we OBSERVE case counts in the regions of a SpatialPolygonsDataFrame; the counts are stored as a variable, X. The model for the UNOBSERVED data, X(s), is as follows:

X(s) ~ Poisson[R(s)]

R(s) = C_A lambda(s) exp[Z(s)beta+Y(s)]

Here X(s) is the number of events in the cell of the computational grid containing s, R(s) is the Poisson rate, C_A is the cell area, lambda(s) is a known offset, Z(s) is a vector of measured covariates and Y(s) is the latent Gaussian process on the computational grid. The other parameters in the model are beta, the covariate effects; and eta=[log(sigma),log(phi)], the parameters of the process Y on an appropriately transformed (in this case log) scale.

We recommend the user takes the following steps before running this method:

  1. Compute approximate values of the parameters, eta, of the process Y using the function minimum.contrast. These approximate values are used for two main reasons: (1) to help inform the size of the computational grid, since we will need to use a cell width that enables us to capture the dependence properties of Y and (2) to help inform the proposal kernel for the MCMC algorithm.

  2. Choose an appropriate grid on which to perform inference using the function chooseCellwidth; this will partly be determined by the results of the first stage and partly by the available computational resource available to perform inference.

  3. Using the function getpolyol, construct the computational grid and polygon overlays, as required. As this can be an expensive step, we recommend that the user saves this object after it has been constructed and in future reference to the data, reloads this object, rather than having to re-compute it (provided the computational grid has not changed).

  4. Decide on which covariates are to play a part in the analysis and use the lgcp function getZmat to interpolate these onto the computational grid. Note that having saved the results from the previous step, this is a relatively quick operation, and allows the user to quickly construct different design matrices, Z, from different candidate models for the data

  5. If required, set up the population offset using SpatialAtRisk functions (see the vignette "Bayesian_lgcp"); specify the priors using lgcpPrior; and if desired, the initial values for the MCMC, using the function lgcpInits.

  6. Run the MCMC algorithm and save the output to disk. We recommend dumping information to disk using the dump2dir function in the output.control argument because it offers much greater flexibility in terms of MCMC diagnosis and post-processing.

  7. Perform post-processing analyses including MCMC diagnostic checks and produce summaries of the posterior expectations we require for presentation. (see the vignette "Bayesian_lgcp" for further details). Functions of use in this step include traceplots, autocorr, parautocorr, ltar, parsummary, priorpost, postcov, textsummary, expectation, exceedProbs and lgcp:::expectation.lgcpPredict

Value

an object of class lgcpPredictAggregateSpatialPlusParameters

References

  1. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle. Bayesian Inference and Data Augmentation Schemes for Spatial, Spatiotemporal and Multivariate Log-Gaussian Cox Processes in R. Submitted.

  2. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/

  3. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  4. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

  5. Wood ATA, Chan G (1994). Simulation of Stationary Gaussian Processes in [0,1]d. Journal of Computational and Graphical Statistics, 3(4), 409-432.

  6. Moller J, Syversveen AR, Waagepetersen RP (1998). Log Gaussian Cox Processes. Scandinavian Journal of Statistics, 25(3), 451-482.

See Also

linkchooseCellWidth, getpolyol, guessinterp, getZmat, addTemporalCovariates, lgcpPrior, lgcpInits, CovFunction lgcpPredictSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars, lgcpPredictMultitypeSpatialPlusPars, ltar, autocorr, parautocorr, traceplots, parsummary, textsummary, priorpost, postcov, exceedProbs, betavals, etavals


lgcpPredictMultitypeSpatialPlusPars function

Description

A function to deliver fully Bayesian inference for a multitype spatial log-Gaussian Cox process.

Usage

lgcpPredictMultitypeSpatialPlusPars(
  formulaList,
  sd,
  typemark = NULL,
  Zmat = NULL,
  model.priorsList,
  model.initsList = NULL,
  spatial.covmodelList,
  cellwidth = NULL,
  poisson.offset = NULL,
  mcmc.control,
  output.control = setoutput(),
  gradtrunc = Inf,
  ext = 2,
  inclusion = "touching"
)

Arguments

formulaList

an object of class formulaList, see ?formulaList. A list of formulae of the form t1 ~ var1 + var2 etc. The name of the dependent variable must correspond to the name of the point type. Only accepts 'simple' formulae, such as the example given.

sd

a marked ppp object, the mark of interest must be able to be coerced to a factor variable

typemark

if there are multiple marks, thrun the MCMC algorithm for spatial point process data. Not for general purpose use.is sets the name of the mark by which

Zmat

design matrix including all covariate effects from each point type, constructed with getZmat

model.priorsList

model priors, a list object of length the number of types, each element set using lgcpPrior

model.initsList

list of model initial values (of length the number of types). The default is NULL, in which case lgcp will use the prior mean to initialise eta and beta will be initialised from an oversispersed glm fit to the data. Otherwise use lgcpInits to specify.

spatial.covmodelList

list of spatial covariance functions (of length the number of types). See ?CovFunction

cellwidth

the width of computational cells

poisson.offset

A list of SpatialAtRisk objects (of length the number of types) defining lambda_k (see below)

mcmc.control

MCMC paramters, see ?mcmcpars

output.control

output choice, see ?setoutput

gradtrunc

truncation for gradient vector equal to H parameter Moller et al 1998 pp 473. Default is Inf, which means no gradient truncation, which seems to work in most settings.

ext

integer multiple by which grid should be extended, default is 2. Generally this will not need to be altered, but if the spatial correlation decays slowly, increasing 'ext' may be necessary.

inclusion

criterion for cells being included into observation window. Either 'touching' or 'centroid'. The former, the default, includes all cells that touch the observation window, the latter includes all cells whose centroids are inside the observation window.

Details

See the vignette "Bayesian_lgcp" for examples of this code in use.

We suppose there are K point types of interest. The model for point-type k is as follows:

X_k(s) ~ Poisson[R_k(s)]

R_k(s) = C_A lambda_k(s) exp[Z_k(s)beta_k+Y_k(s)]

Here X_k(s) is the number of events of type k in the computational grid cell containing the point s, R_k(s) is the Poisson rate, C_A is the cell area, lambda_k(s) is a known offset, Z_k(s) is a vector of measured covariates and Y_i(s) where i = 1,...,K+1 are latent Gaussian processes on the computational grid. The other parameters in the model are beta_k , the covariate effects for the kth type; and eta_i = [log(sigma_i),log(phi_i)], the parameters of the process Y_i for i = 1,...,K+1 on an appropriately transformed (again, in this case log) scale.

We recommend the user takes the following steps before running this method:

  1. Compute approximate values of the parameters, eta, of the process Y using the function minimum.contrast. These approximate values are used for two main reasons: (1) to help inform the size of the computational grid, since we will need to use a cell width that enables us to capture the dependence properties of Y and (2) to help inform the proposal kernel for the MCMC algorithm.

  2. Choose an appropriate grid on which to perform inference using the function chooseCellwidth; this will partly be determined by the results of the first stage and partly by the available computational resource available to perform inference.

  3. Using the function getpolyol, construct the computational grid and polygon overlays, as required. As this can be an expensive step, we recommend that the user saves this object after it has been constructed and in future reference to the data, reloads this object, rather than having to re-compute it (provided the computational grid has not changed).

  4. Decide on which covariates are to play a part in the analysis and use the lgcp function getZmat to interpolate these onto the computational grid. Note that having saved the results from the previous step, this is a relatively quick operation, and allows the user to quickly construct different design matrices, Z, from different candidate models for the data

  5. If required, set up the population offset using SpatialAtRisk functions (see the vignette "Bayesian_lgcp"); specify the priors using lgcpPrior; and if desired, the initial values for the MCMC, using the function lgcpInits.

  6. Run the MCMC algorithm and save the output to disk. We recommend dumping information to disk using the dump2dir function in the output.control argument because it offers much greater flexibility in terms of MCMC diagnosis and post-processing.

  7. Perform post-processing analyses including MCMC diagnostic checks and produce summaries of the posterior expectations we require for presentation. (see the vignette "Bayesian_lgcp" for further details). Functions of use in this step include traceplots, autocorr, parautocorr, ltar, parsummary, priorpost, postcov, textsummary, expectation, exceedProbs and lgcp:::expectation.lgcpPredict

Value

an object of class lgcpPredictMultitypeSpatialPlusParameters

References

  1. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle. Bayesian Inference and Data Augmentation Schemes for Spatial, Spatiotemporal and Multivariate Log-Gaussian Cox Processes in R. Submitted.

  2. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/

  3. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  4. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

  5. Wood ATA, Chan G (1994). Simulation of Stationary Gaussian Processes in [0,1]d. Journal of Computational and Graphical Statistics, 3(4), 409-432.

  6. Moller J, Syversveen AR, Waagepetersen RP (1998). Log Gaussian Cox Processes. Scandinavian Journal of Statistics, 25(3), 451-482.

See Also

linkchooseCellWidth, getpolyol, guessinterp, getZmat, addTemporalCovariates, lgcpPrior, lgcpInits, CovFunction lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars, ltar, autocorr, parautocorr, traceplots, parsummary, textsummary, priorpost, postcov, exceedProbs, betavals, etavals


lgcpPredictSpatial function

Description

The function lgcpPredictSpatial performs spatial prediction for log-Gaussian Cox Processes

Usage

lgcpPredictSpatial(
  sd,
  model.parameters = lgcppars(),
  spatial.covmodel = "exponential",
  covpars = c(),
  cellwidth = NULL,
  gridsize = NULL,
  spatial.intensity,
  spatial.offset = NULL,
  mcmc.control,
  output.control = setoutput(),
  gradtrunc = Inf,
  ext = 2,
  inclusion = "touching"
)

Arguments

sd

a spatial point pattern object, see ?ppp

model.parameters

values for parameters, see ?lgcppars

spatial.covmodel

correlation type see ?CovarianceFct

covpars

vector of additional parameters for certain classes of covariance function (eg Matern), these must be supplied in the order given in ?CovarianceFct

cellwidth

width of grid cells on which to do MALA (grid cells are square) in same units as observation window. Note EITHER gridsize OR cellwidthe must be specified.

gridsize

size of output grid required. Note EITHER gridsize OR cellwidthe must be specified.

spatial.intensity

the fixed spatial component: an object of that can be coerced to one of class spatialAtRisk

spatial.offset

Numeric of length 1. Optional offset parameter, corresponding to the expected number of cases. NULL by default, in which case, this is estimateed from teh data.

mcmc.control

MCMC paramters, see ?mcmcpars

output.control

output choice, see ?setoutput

gradtrunc

truncation for gradient vector equal to H parameter Moller et al 1998 pp 473. Default is Inf, which means no gradient truncation. Set to NULL to estimate this automatically (though note that this may not necessarily be a good choice). The default seems to work in most settings.

ext

integer multiple by which grid should be extended, default is 2. Generally this will not need to be altered, but if the spatial correlation decays slowly, increasing 'ext' may be necessary.

inclusion

criterion for cells being included into observation window. Either 'touching' or 'centroid'. The former, the default, includes all cells that touch the observation window, the latter includes all cells whose centroids are inside the observation window.

Details

The following is a mathematical description of a log-Gaussian Cox Process, it is best viewed in the pdf version of the manual.

Let Y(s)\mathcal Y(s) be a spatial Gaussian process and WR2W\subset R^2 be an observation window in space. Cases occur at spatial positions xWx \in W according to an inhomogeneous spatial Cox process, i.e. a Poisson process with a stochastic intensity R(x)R(x), The number of cases, XSX_{S}, arising in any SWS \subseteq W is then Poisson distributed conditional on R()R(\cdot),

XSPoisson{SR(s)ds}X_{S} \sim \mbox{Poisson}\left\{\int_S R(s)ds\right\}

Following Brix and Diggle (2001) and Diggle et al (2005) (but ignoring temporal variation), the intensity is decomposed multiplicatively as

R(s,t)=λ(s)exp{Y(s,t)}.R(s,t) = \lambda(s)\exp\{\mathcal Y(s,t)\}.

In the above, the fixed spatial component, λ:R2R0\lambda:R^2\mapsto R_{\geq 0}, is a known function, proportional to the population at risk at each point in space and scaled so that

Wλ(s)ds=1.\int_W\lambda(s)d s=1.

Before calling this function, the user must decide on the parameters, spatial covariance model, spatial discretisation, fixed spatial (λ(s)\lambda(s)) component, mcmc parameters, and whether or not any output is required. Note there is no autorotate option for this function.

Value

the results of fitting the model in an object of class lgcpPredict

References

  1. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/

  2. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  3. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

  4. Wood ATA, Chan G (1994). Simulation of Stationary Gaussian Processes in [0,1]d. Journal of Computational and Graphical Statistics, 3(4), 409-432.

  5. Moller J, Syversveen AR, Waagepetersen RP (1998). Log Gaussian Cox Processes. Scandinavian Journal of Statistics, 25(3), 451-482.

See Also

lgcpPredict KinhomAverage, ginhomAverage, lambdaEst, muEst, spatialparsEst, thetaEst, spatialAtRisk, temporalAtRisk, lgcppars, CovarianceFct, mcmcpars, setoutput print.lgcpPredict, xvals.lgcpPredict, yvals.lgcpPredict, plot.lgcpPredict, meanfield.lgcpPredict, rr.lgcpPredict, serr.lgcpPredict, intens.lgcpPredict, varfield.lgcpPredict, gridfun.lgcpPredict, gridav.lgcpPredict, hvals.lgcpPredict, window.lgcpPredict, mcmctrace.lgcpPredict, plotExceed.lgcpPredict, quantile.lgcpPredict, identify.lgcpPredict, expectation.lgcpPredict, extract.lgcpPredict, showGrid.lgcpPredict


lgcpPredictSpatialINLA function

Description

——————————————————- !IMPORTANT! after library(lgcp) this will be a dummy function. In order to use, type getlgcpPredictSpatialINLA() at the console. This will download and install the true function. ——————————————————-

Usage

lgcpPredictSpatialINLA(
  sd,
  ns,
  model.parameters = lgcppars(),
  spatial.covmodel = "exponential",
  covpars = c(),
  cellwidth = NULL,
  gridsize = NULL,
  spatial.intensity,
  ext = 2,
  optimverbose = FALSE,
  inlaverbose = TRUE,
  generic0hyper = list(theta = list(initial = 0, fixed = TRUE)),
  strategy = "simplified.laplace",
  method = "Nelder-Mead"
)

Arguments

sd

a spatial point pattern object, see ?ppp

ns

size of neighbourhood to use for GMRF approximation ns=1 corresponds to 3^2-1=8 eight neighbours around each point, ns=2 corresponds to 5^2-1=24 neighbours etc ...

model.parameters

values for parameters, see ?lgcppars

spatial.covmodel

correlation type see ?CovarianceFct

covpars

vector of additional parameters for certain classes of covariance function (eg Matern), these must be supplied in the order given in ?CovarianceFct

cellwidth

width of grid cells on which to do MALA (grid cells are square). Note EITHER gridsize OR cellwidthe must be specified.

gridsize

size of output grid required. Note EITHER gridsize OR cellwidthe must be specified.

spatial.intensity

the fixed spatial component: an object of that can be coerced to one of class spatialAtRisk

ext

integer multiple by which grid should be extended, default is 2. Generally this will not need to be altered, but if the spatial correlation decays slowly, increasing 'ext' may be necessary.

optimverbose

logical whether to print optimisation details of covariance matching step

inlaverbose

loogical whether to print the inla fitting procedure to the console

generic0hyper

optional hyperparameter list specification for "generic0" INLA model. default is list(theta=list(initial=0,fixed=TRUE)), which effectively treats the precision matrix as known.

strategy

inla strategy

method

optimisation method to be used in function matchcovariance, default is "Nelder-Mead". See ?matchcovariance

Details

The function lgcpPredictSpatialINLA performs spatial prediction for log-Gaussian Cox Processes using the integrated nested Laplace approximation.

The following is a mathematical description of a log-Gaussian Cox Process, it is best viewed in the pdf version of the manual.

Let Y(s)\mathcal Y(s) be a spatial Gaussian process and WR2W\subset R^2 be an observation window in space. Cases occur at spatial positions xWx \in W according to an inhomogeneous spatial Cox process, i.e. a Poisson process with a stochastic intensity R(x)R(x), The number of cases, XSX_{S}, arising in any SWS \subseteq W is then Poisson distributed conditional on R()R(\cdot),

XSPoisson{SR(s)ds}X_{S} \sim \mbox{Poisson}\left\{\int_S R(s)ds\right\}

Following Brix and Diggle (2001) and Diggle et al (2005) (but ignoring temporal variation), the intensity is decomposed multiplicatively as

R(s,t)=λ(s)exp{Y(s,t)}.R(s,t) = \lambda(s)\exp\{\mathcal Y(s,t)\}.

In the above, the fixed spatial component, λ:R2R0\lambda:R^2\mapsto R_{\geq 0}, is a known function, proportional to the population at risk at each point in space and scaled so that

Wλ(s)ds=1.\int_W\lambda(s)d s=1.

Before calling this function, the user must decide on the parameters, spatial covariance model, spatial discretisation, fixed spatial (λ(s)\lambda(s)) component and whether or not any output is required. Note there is no autorotate option for this function.

Value

the results of fitting the model in an object of class lgcpPredict

References

  1. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/

  2. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  3. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

  4. Wood ATA, Chan G (1994). Simulation of Stationary Gaussian Processes in [0,1]d. Journal of Computational and Graphical Statistics, 3(4), 409-432.

  5. Moller J, Syversveen AR, Waagepetersen RP (1998). Log Gaussian Cox Processes. Scandinavian Journal of Statistics, 25(3), 451-482.

See Also

lgcpPredict KinhomAverage, ginhomAverage, lambdaEst, muEst, spatialparsEst, thetaEst, spatialAtRisk, temporalAtRisk, lgcppars, CovarianceFct, mcmcpars, setoutput print.lgcpPredict, xvals.lgcpPredict, yvals.lgcpPredict, plot.lgcpPredict, meanfield.lgcpPredict, rr.lgcpPredict, serr.lgcpPredict, intens.lgcpPredict, varfield.lgcpPredict, gridfun.lgcpPredict, gridav.lgcpPredict, hvals.lgcpPredict, window.lgcpPredict, mcmctrace.lgcpPredict, plotExceed.lgcpPredict, quantile.lgcpPredict, identify.lgcpPredict, expectation.lgcpPredict, extract.lgcpPredict, showGrid.lgcpPredict,


lgcpPredictSpatialPlusPars function

Description

A function to deliver fully Bayesian inference for the spatial log-Gaussian Cox process.

Usage

lgcpPredictSpatialPlusPars(
  formula,
  sd,
  Zmat = NULL,
  model.priors,
  model.inits = lgcpInits(),
  spatial.covmodel,
  cellwidth = NULL,
  poisson.offset = NULL,
  mcmc.control,
  output.control = setoutput(),
  gradtrunc = Inf,
  ext = 2,
  inclusion = "touching"
)

Arguments

formula

a formula object of the form X ~ var1 + var2 etc. The name of the dependent variable must be "X". Only accepts 'simple' formulae, such as the example given.

sd

a spatstat ppp object

Zmat

design matrix Z (see below) constructed with getZmat

model.priors

model priors, set using lgcpPrior

model.inits

model initial values. The default is NULL, in which case lgcp will use the prior mean to initialise eta and beta will be initialised from an oversispersed glm fit to the data. Otherwise use lgcpInits to specify.

spatial.covmodel

choice of spatial covariance function. See ?CovFunction

cellwidth

the width of computational cells

poisson.offset

A SpatialAtRisk object defining lambda (see below)

mcmc.control

MCMC paramters, see ?mcmcpars

output.control

output choice, see ?setoutput

gradtrunc

truncation for gradient vector equal to H parameter Moller et al 1998 pp 473. Default is Inf, which means no gradient truncation, which seems to work in most settings.

ext

integer multiple by which grid should be extended, default is 2. Generally this will not need to be altered, but if the spatial correlation decays slowly, increasing 'ext' may be necessary.

inclusion

criterion for cells being included into observation window. Either 'touching' or 'centroid'. The former, the default, includes all cells that touch the observation window, the latter includes all cells whose centroids are inside the observation window.

Details

See the vignette "Bayesian_lgcp" for examples of this code in use.

The model for the data is as follows:

X(s) ~ Poisson[R(s)]

R(s) = C_A lambda(s) exp[Z(s)beta+Y(s)]

Here X(s) is the number of events in the cell of the computational grid containing s, R(s) is the Poisson rate, C_A is the cell area, lambda(s) is a known offset, Z(s) is a vector of measured covariates and Y(s) is the latent Gaussian process on the computational grid. The other parameters in the model are beta, the covariate effects; and eta=[log(sigma),log(phi)], the parameters of the process Y on an appropriately transformed (in this case log) scale.

We recommend the user takes the following steps before running this method:

  1. Compute approximate values of the parameters, eta, of the process Y using the function minimum.contrast. These approximate values are used for two main reasons: (1) to help inform the size of the computational grid, since we will need to use a cell width that enables us to capture the dependence properties of Y and (2) to help inform the proposal kernel for the MCMC algorithm.

  2. Choose an appropriate grid on which to perform inference using the function chooseCellwidth; this will partly be determined by the results of the first stage and partly by the available computational resource available to perform inference.

  3. Using the function getpolyol, construct the computational grid and polygon overlays, as required. As this can be an expensive step, we recommend that the user saves this object after it has been constructed and in future reference to the data, reloads this object, rather than having to re-compute it (provided the computational grid has not changed).

  4. Decide on which covariates are to play a part in the analysis and use the lgcp function getZmat to interpolate these onto the computational grid. Note that having saved the results from the previous step, this is a relatively quick operation, and allows the user to quickly construct different design matrices, Z, from different candidate models for the data

  5. If required, set up the population offset using SpatialAtRisk functions (see the vignette "Bayesian_lgcp"); specify the priors using lgcpPrior; and if desired, the initial values for the MCMC, using the function lgcpInits.

  6. Run the MCMC algorithm and save the output to disk. We recommend dumping information to disk using the dump2dir function in the output.control argument because it offers much greater flexibility in terms of MCMC diagnosis and post-processing.

  7. Perform post-processing analyses including MCMC diagnostic checks and produce summaries of the posterior expectations we require for presentation. (see the vignette "Bayesian_lgcp" for further details). Functions of use in this step include traceplots, autocorr, parautocorr, ltar, parsummary, priorpost, postcov, textsummary, expectation, exceedProbs and lgcp:::expectation.lgcpPredict

Value

an object of class lgcpPredictSpatialOnlyPlusParameters

References

  1. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle. Bayesian Inference and Data Augmentation Schemes for Spatial, Spatiotemporal and Multivariate Log-Gaussian Cox Processes in R. Submitted.

  2. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/

  3. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  4. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

  5. Wood ATA, Chan G (1994). Simulation of Stationary Gaussian Processes in [0,1]d. Journal of Computational and Graphical Statistics, 3(4), 409-432.

  6. Moller J, Syversveen AR, Waagepetersen RP (1998). Log Gaussian Cox Processes. Scandinavian Journal of Statistics, 25(3), 451-482.

See Also

linkchooseCellWidth, getpolyol, guessinterp, getZmat, addTemporalCovariates, lgcpPrior, lgcpInits, CovFunction lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars, lgcpPredictMultitypeSpatialPlusPars, ltar, autocorr, parautocorr, traceplots, parsummary, textsummary, priorpost, postcov, exceedProbs, betavals, etavals


lgcpPredictSpatioTemporalPlusPars function

Description

A function to deliver fully Bayesian inference for the spatiotemporal log-Gaussian Cox process.

Usage

lgcpPredictSpatioTemporalPlusPars(
  formula,
  xyt,
  T,
  laglength,
  ZmatList = NULL,
  model.priors,
  model.inits = lgcpInits(),
  spatial.covmodel,
  cellwidth = NULL,
  poisson.offset = NULL,
  mcmc.control,
  output.control = setoutput(),
  gradtrunc = Inf,
  ext = 2,
  inclusion = "touching"
)

Arguments

formula

a formula object of the form X ~ var1 + var2 etc. The name of the dependent variable must be "X". Only accepts 'simple' formulae, such as the example given.

xyt

An object of class stppp

T

the time point of interest

laglength

the number of previous time points to include in the analysis

ZmatList

A list of design matrices Z constructed with getZmat and possibly addTemporalCovariates see the details below and Bayesian_lgcp vignette for details on how to construct this.

model.priors

model priors, set using lgcpPrior

model.inits

model initial values. The default is NULL, in which case lgcp will use the prior mean to initialise eta and beta will be initialised from an oversispersed glm fit to the data. Otherwise use lgcpInits to specify.

spatial.covmodel

choice of spatial covariance function. See ?CovFunction

cellwidth

the width of computational cells

poisson.offset

A list of SpatialAtRisk objects (of length the number of types) defining lambda_k (see below)

mcmc.control

MCMC paramters, see ?mcmcpars

output.control

output choice, see ?setoutput

gradtrunc

truncation for gradient vector equal to H parameter Moller et al 1998 pp 473. Default is Inf, which means no gradient truncation, which seems to work in most settings.

ext

integer multiple by which grid should be extended, default is 2. Generally this will not need to be altered, but if the spatial correlation decays slowly, increasing 'ext' may be necessary.

inclusion

criterion for cells being included into observation window. Either 'touching' or 'centroid'. The former, the default, includes all cells that touch the observation window, the latter includes all cells whose centroids are inside the observation window.

Details

See the vignette "Bayesian_lgcp" for examples of this code in use.

The model for the data is as follows:

X(s) ~ Poisson[R(s,t)]

R(s) = C_A lambda(s,t) exp[Z(s,t)beta+Y(s,t)]

Here X(s,t) is the number of events in the cell of the computational grid containing s, R(s,t) is the Poisson rate, C_A is the cell area, lambda(s,t) is a known offset, Z(s,t) is a vector of measured covariates and Y(s,t) is the latent Gaussian process on the computational grid. The other parameters in the model are beta, the covariate effects; and eta=[log(sigma),log(phi),log(theta)], the parameters of the process Y on an appropriately transformed (in this case log) scale.

We recommend the user takes the following steps before running this method:

  1. Compute approximate values of the parameters, eta, of the process Y using the function minimum.contrast. These approximate values are used for two main reasons: (1) to help inform the size of the computational grid, since we will need to use a cell width that enables us to capture the dependence properties of Y and (2) to help inform the proposal kernel for the MCMC algorithm.

  2. Choose an appropriate grid on which to perform inference using the function chooseCellwidth; this will partly be determined by the results of the first stage and partly by the available computational resource available to perform inference.

  3. Using the function getpolyol, construct the computational grid and polygon overlays, as required. As this can be an expensive step, we recommend that the user saves this object after it has been constructed and in future reference to the data, reloads this object, rather than having to re-compute it (provided the computational grid has not changed).

  4. Decide on which covariates are to play a part in the analysis and use the lgcp function getZmat to interpolate these onto the computational grid. Note that having saved the results from the previous step, this is a relatively quick operation, and allows the user to quickly construct different design matrices, Z, from different candidate models for the data

  5. If required, set up the population offset using SpatialAtRisk functions (see the vignette "Bayesian_lgcp"); specify the priors using lgcpPrior; and if desired, the initial values for the MCMC, using the function lgcpInits.

  6. Run the MCMC algorithm and save the output to disk. We recommend dumping information to disk using the dump2dir function in the output.control argument because it offers much greater flexibility in terms of MCMC diagnosis and post-processing.

  7. Perform post-processing analyses including MCMC diagnostic checks and produce summaries of the posterior expectations we require for presentation. (see the vignette "Bayesian_lgcp" for further details). Functions of use in this step include traceplots, autocorr, parautocorr, ltar, parsummary, priorpost, postcov, textsummary, expectation, exceedProbs and lgcp:::expectation.lgcpPredict

The user must provide a list of design matrices to use this function. In the interpolation step above, there are three cases to consider

  1. where Z(s,t) cannot be decomposed, i.e., Z are true spatiotemporal covariates. In this case, each element of the list must be constructed separately using the function getZmat on the covariates for each time point.

  2. Z(s,t)beta = Z_1(s)beta_1 + Z_2(t)beta_2: the spatial and temporal effects are separable; in this case use the function addTemporalCovariates, to aid in the construction of the list.

  3. Z(s,t)beta = Z(s)beta, in which case the user only needs to perform the interpolation using getZmat once, each of the elements of the list will then be identical.

  4. Z(s,t)beta = Z(t)beta in this case we follow the procedure for the separable case above. For example, if dotw is a temporal covariate we would use formula <- X ~ dotw for the main algorithm, formula.spatial <- X ~ 1 to interpolate the spatial covariates using getZmat, followed by temporal.formula <- t ~ dotw - 1 using addTemporalCovariates to construct the list of design matrices, Zmat.

Value

an object of class lgcpPredictSpatioTemporalPlusParameters

References

  1. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle. Bayesian Inference and Data Augmentation Schemes for Spatial, Spatiotemporal and Multivariate Log-Gaussian Cox Processes in R. Submitted.

  2. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/

  3. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  4. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

  5. Wood ATA, Chan G (1994). Simulation of Stationary Gaussian Processes in [0,1]d. Journal of Computational and Graphical Statistics, 3(4), 409-432.

  6. Moller J, Syversveen AR, Waagepetersen RP (1998). Log Gaussian Cox Processes. Scandinavian Journal of Statistics, 25(3), 451-482.

See Also

linkchooseCellWidth, getpolyol, guessinterp, getZmat, addTemporalCovariates, lgcpPrior, lgcpInits, CovFunction lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictMultitypeSpatialPlusPars, ltar, autocorr, parautocorr, traceplots, parsummary, textsummary, priorpost, postcov, exceedProbs, betavals, etavals


lgcpPrior function

Description

A function to create the prior for beta and eta ready for a run of the MCMC algorithm.

Usage

lgcpPrior(etaprior = NULL, betaprior = NULL)

Arguments

etaprior

an object of class PriorSpec defining the prior for the parameters of the latent field, eta. See ?PriorSpec.list.

betaprior

etaprior an object of class PriorSpec defining the prior for the parameters of main effects, beta. See ?PriorSpec.list.

Value

an R structure representing the prior density ready for a run of the MCMC algorithm.

See Also

GaussianPrior, LogGaussianPrior, PriorSpec.list, chooseCellwidth, getpolyol, guessinterp, getZmat, addTemporalCovariates, lgcpPrior, lgcpInits, CovFunction lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars, lgcpPredictMultitypeSpatialPlusPars

Examples

lgcpPrior(etaprior=PriorSpec(LogGaussianPrior(mean=log(c(1,500)),
    variance=diag(0.15,2))),betaprior=PriorSpec(GaussianPrior(mean=rep(0,9),
    variance=diag(10^6,9))))

lgcpSim function

Description

Approximate simulation from a spatiotemoporal log-Gaussian Cox Process. Returns an stppp object.

Usage

lgcpSim(
  owin = NULL,
  tlim = as.integer(c(0, 10)),
  spatial.intensity = NULL,
  temporal.intensity = NULL,
  cellwidth = 0.05,
  model.parameters = lgcppars(sigma = 2, phi = 0.2, theta = 1),
  spatial.covmodel = "exponential",
  covpars = c(),
  returnintensities = FALSE,
  progressbar = TRUE,
  ext = 2,
  plot = FALSE,
  ratepow = 0.25,
  sleeptime = 0,
  inclusion = "touching"
)

Arguments

owin

polygonal observation window

tlim

time interval on which to simulate data

spatial.intensity

object that can be coerced into a spatialAtRisk object. if NULL then uniform spatial is chosen

temporal.intensity

the fixed temporal component: either a numeric vector, or a function that can be coerced into an object of class temporalAtRisk

cellwidth

width of cells in same units as observation window

model.parameters

parameters of model, see ?lgcppars.

spatial.covmodel

spatial covariance function, default is exponential, see ?CovarianceFct

covpars

vector of additional parameters for spatial covariance function, in order they appear in chosen model in ?CovarianceFct

returnintensities

logigal, whether to return the spatial intensities and true field Y at each time. Default FALSE.

progressbar

logical, whether to print a progress bar. Default TRUE.

ext

how much to extend the parameter space by. Default is 2.

plot

logical, whether to plot intensities.

ratepow

power that intensity is raised to for plotting purposes (makes the plot more pleasign to the eye), defaul 0.25

sleeptime

time in seconds to sleep between plots

inclusion

criterion for cells being included into observation window. Either 'touching' or 'centroid'. The former includes all cells that touch the observation window, the latter includes all cells whose centroids are inside the observation window.

Details

The following is a mathematical description of a log-Gaussian Cox Process, it is best viewed in the pdf version of the manual.

Let Y(s,t)\mathcal Y(s,t) be a spatiotemporal Gaussian process, WR2W\subset R^2 be an observation window in space and TR0T\subset R_{\geq 0} be an interval of time of interest. Cases occur at spatio-temporal positions (x,t)W×T(x,t) \in W \times T according to an inhomogeneous spatio-temporal Cox process, i.e. a Poisson process with a stochastic intensity R(x,t)R(x,t), The number of cases, XS,[t1,t2]X_{S,[t_1,t_2]}, arising in any SWS \subseteq W during the interval [t1,t2]T[t_1,t_2]\subseteq T is then Poisson distributed conditional on R()R(\cdot),

XS,[t1,t2]Poisson{St1t2R(s,t)dsdt}X_{S,[t_1,t_2]} \sim \mbox{Poisson}\left\{\int_S\int_{t_1}^{t_2} R(s,t)d sd t\right\}

Following Brix and Diggle (2001) and Diggle et al (2005), the intensity is decomposed multiplicatively as

R(s,t)=λ(s)μ(t)exp{Y(s,t)}.R(s,t) = \lambda(s)\mu(t)\exp\{\mathcal Y(s,t)\}.

In the above, the fixed spatial component, λ:R2R0\lambda:R^2\mapsto R_{\geq 0}, is a known function, proportional to the population at risk at each point in space and scaled so that

Wλ(s)ds=1,\int_W\lambda(s)d s=1,

whilst the fixed temporal component, μ:R0R0\mu:R_{\geq 0}\mapsto R_{\geq 0}, is also a known function with

μ(t)δt=E[XW,δt],\mu(t) \delta t = E[X_{W,\delta t}],

for tt in a small interval of time, δt\delta t, over which the rate of the process over WW can be considered constant.

Value

an stppp object containing the data

References

  1. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/

  2. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  3. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

  4. Wood ATA, Chan G (1994). Simulation of Stationary Gaussian Processes in [0,1]d. Journal of Computational and Graphical Statistics, 3(4), 409-432.

  5. Moller J, Syversveen AR, Waagepetersen RP (1998). Log Gaussian Cox Processes. Scandinavian Journal of Statistics, 25(3), 451-482.

See Also

lgcpPredict, showGrid.stppp, stppp

Examples

## Not run: library(spatstat.explore); library(spatstat.utils); xyt <- lgcpSim()

lgcpSimMultitypeSpatialCovariates function

Description

A function to Simulate multivariate point process models

Usage

lgcpSimMultitypeSpatialCovariates(
  formulaList,
  owin,
  regionalcovariates,
  pixelcovariates,
  betaList,
  spatial.offsetList = NULL,
  cellwidth,
  model.parameters,
  spatial.covmodel = "exponential",
  covpars = c(),
  ext = 2,
  plot = FALSE,
  inclusion = "touching"
)

Arguments

formulaList

a list of formulae objetcs

owin

a spatstat owin object on which to simulate the data

regionalcovariates

a SpatialPolygonsDataFrame object

pixelcovariates

a SpatialPixelsDataFrame object

betaList

list of beta parameters

spatial.offsetList

list of poisson offsets

cellwidth

cellwidth

model.parameters

model parameters, a list eg list(sigma=1,phi=0.2)

spatial.covmodel

the choice of spatial covariance model, can be anything from the RandomFields covariance function, CovariacenFct.

covpars

additional covariance parameters, for the chosen model, optional.

ext

number of times to extend the simulation window

plot

whether to plot the results automatically

inclusion

criterion for cells being included into observation window. Either 'touching' or 'centroid'. The former, the default, includes all cells that touch the observation window, the latter includes all cells whose centroids are inside the observation window.

Value

a marked ppp object, the simulated data


lgcpSimSpatial function

Description

A function to simulate from a log gaussian process

Usage

lgcpSimSpatial(
  owin = NULL,
  spatial.intensity = NULL,
  expectednumcases = 100,
  cellwidth = 0.05,
  model.parameters = lgcppars(sigma = 2, phi = 0.2),
  spatial.covmodel = "exponential",
  covpars = c(),
  ext = 2,
  plot = FALSE,
  inclusion = "touching"
)

Arguments

owin

observation window

spatial.intensity

an object that can be coerced to one of class spatialAtRisk

expectednumcases

the expected number of cases

cellwidth

width of cells in same units as observation window

model.parameters

parameters of model, see ?lgcppars. Only set sigma and phi for spatial model.

spatial.covmodel

spatial covariance function, default is exponential, see ?CovarianceFct

covpars

vector of additional parameters for spatial covariance function, in order they appear in chosen model in ?CovarianceFct

ext

how much to extend the parameter space by. Default is 2.

plot

logical, whether to plot the latent field.

inclusion

criterion for cells being included into observation window. Either 'touching' or 'centroid'. The former includes all cells that touch the observation window, the latter includes all cells whose centroids are inside the observation window.

Value

a ppp object containing the data


lgcpSimSpatialCovariates function

Description

A function to simulate a spatial LGCP.

Usage

lgcpSimSpatialCovariates(
  formula,
  owin,
  regionalcovariates = NULL,
  pixelcovariates = NULL,
  Zmat = NULL,
  beta,
  poisson.offset = NULL,
  cellwidth,
  model.parameters,
  spatial.covmodel = "exponential",
  covpars = c(),
  ext = 2,
  plot = FALSE,
  inclusion = "touching"
)

Arguments

formula

a formula of the form X ~ var1 + var2 etc.

owin

the observation window on which to do the simulation

regionalcovariates

an optional object of class SpatialPolygonsDataFrame containing covariates

pixelcovariates

an optional object of class SpatialPixelsDataFrame containing covariates

Zmat

optional design matrix, if the polygon/polygon overlays have already been computed

beta

the parameters, beta for the model

poisson.offset

the poisson offet, created using a SpatialAtRisk.fromXYZ class of objects

cellwidth

the with of cells on which to do the simulation

model.parameters

the paramters of the model eg list(sigma=1,phi=0.2)

spatial.covmodel

the choice of spatial covariance model, can be anything from the RandomFields covariance function, CovariacenFct.

covpars

additional covariance parameters, for the chosen model, optional.

ext

the amount by which to extend the observation grid in each direction, default is 2

plot

whether to plot the resulting data

inclusion

criterion for cells being included into observation window. Either 'touching' or 'centroid'. The former, the default, includes all cells that touch the observation window, the latter includes all cells whose centroids are inside the observation window.

Value

a ppp onject containing the simulated data


lgcpvignette function

Description

Display the introductory vignette for the lgcp package.

Usage

lgcpvignette()

Value

displays the vignette by calling browseURL


loc2poly function

Description

Converts a polygon selected via the mouse in a graphics window into an polygonal owin object. (Make sure the x and y scales are correct!) Points must be selected traversing the required window in one direction (ie either clockwise, or anticlockwise), points must not be overlapping. Select the sequence of edges via left mouse button clicks and store the polygon with a right click.

Usage

loc2poly(n = 512, type = "l", col = "black", ...)

Arguments

n

the maximum number of points to locate

type

same as argument type in function locator. see ?locator. Default draws lines

col

colour of lines/points

...

other arguments to pass to locate

Value

a polygonal owin object

See Also

lgcpPredict, identify.lgcpPredict

Examples

## Not run: plot(lg) # lg an lgcpPredict object
## Not run: subwin <- loc2poly())

LogGaussianPrior function

Description

A function to create a Gaussian prior on the log scale

Usage

LogGaussianPrior(mean, variance)

Arguments

mean

a vector of length 2 representing the mean (on the log scale)

variance

a 2x2 matrix representing the variance (on the log scale)

Value

an object of class LogGaussianPrior that can be passed to the function PriorSpec.

See Also

GaussianPrior, linkPriorSpec.list

Examples

## Not run: LogGaussianPrior(mean=log(c(1,500)),variance=diag(0.15,2))

loop over an iterator

Description

useful for testing progress bars

Usage

loop.mcmc(object, sleep = 1)

Arguments

object

an mcmc iterator

sleep

pause between iterations in seconds


ltar function

Description

A function to return the sampled log-target from a call to the function lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars or lgcpPredictMultitypeSpatialPlusPars. This is used as a convergence diagnostic.

Usage

ltar(lg)

Arguments

lg

an object produced by a call to lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars orlgcpPredictMultitypeSpatialPlusPars

Value

the log-target from each saved iteration of the MCMC chain.

See Also

autocorr, parautocorr, traceplots, parsummary, textsummary, priorpost, postcov, exceedProbs, betavals, etavals


MALAlgcp function

Description

ADVANCED USE ONLY A function to perform MALA for the spatial only case

Usage

MALAlgcp(
  mcmcloop,
  inits,
  adaptivescheme,
  M,
  N,
  Mext,
  Next,
  sigma,
  phi,
  theta,
  mu,
  nis,
  cellarea,
  spatialvals,
  temporal.fitted,
  tdiff,
  scaleconst,
  rootQeigs,
  invrootQeigs,
  cellInside,
  MCMCdiag,
  gradtrunc,
  gridfun,
  gridav,
  mcens,
  ncens,
  aggtimes
)

Arguments

mcmcloop

an mcmcLoop object

inits

initial values from mcmc.control

adaptivescheme

adaptive scheme from mcmc.control

M

number of cells in x direction on output grid

N

number of cells in y direction on output grid

Mext

number of cells in x direction on extended output grid

Next

number of cells in y direction on extended output grid

sigma

spatial covariance parameter sigma

phi

spatial covariance parameter phi

theta

temporal correlation parameter theta

mu

spatial covariance parameter mu

nis

cell counts matrix

cellarea

area of cells

spatialvals

spatial at risk, function lambda, interpolated onto the requisite grid

temporal.fitted

temporal fitted values representing mu(t)

tdiff

vecto of time differences with convention that the first element is Inf

scaleconst

expected number of observations

rootQeigs

square root of eigenvalues of precision matrix

invrootQeigs

inverse square root of eigenvalues of precision matrix

cellInside

logical matrix dictating whether cells are inside the observation window

MCMCdiag

defunct

gradtrunc

gradient truncation parameter

gridfun

grid functions

gridav

grid average functions

mcens

x-coordinates of cell centroids

ncens

y-coordinates of cell centroids

aggtimes

z-coordinates of cell centroids (ie time)

Value

object passed back to lgcpPredictSpatial


MALAlgcpAggregateSpatial.PlusPars function

Description

A function to run the MCMC algorithm for aggregated spatial point process data. Not for general purpose use.

Usage

MALAlgcpAggregateSpatial.PlusPars(
  mcmcloop,
  inits,
  adaptivescheme,
  M,
  N,
  Mext,
  Next,
  mcens,
  ncens,
  formula,
  Zmat,
  model.priors,
  model.inits,
  fftgrid,
  spatial.covmodel,
  nis,
  cellarea,
  spatialvals,
  cellInside,
  MCMCdiag,
  gradtrunc,
  gridfun,
  gridav,
  d,
  spdf,
  ol,
  Nfreq
)

Arguments

mcmcloop

details of the mcmc loop

inits

initial values

adaptivescheme

the adaptive MCMC scheme

M

number of grid cells in x direction

N

number of grid cells in y direction

Mext

number of extended grid cells in x direction

Next

number of extended grid cells in y direction

mcens

centroids in x direction

ncens

centroids in y direction

formula

a formula object of the form X ~ var1 + var2 etc.

Zmat

design matrix constructed using getZmat

model.priors

model priors, constructed using lgcpPrior

model.inits

initial values for the MCMC

fftgrid

an objects of class FFTgrid, see genFFTgrid

spatial.covmodel

spatial covariance model, consructed with CovFunction

nis

cell counts on the etended grid

cellarea

the cell area

spatialvals

inerpolated poisson offset on fft grid

cellInside

0-1 matrix indicating inclusion in the observation window

MCMCdiag

not used

gradtrunc

gradient truncation parameter

gridfun

used to specify other actions to be taken, e.g. dumping MCMC output to disk.

gridav

used for computing Monte Carlo expectations online

d

matrix of toral distances

spdf

the SpatialPolygonsDataFrame containing the aggregate counts as a variable X

ol

overlay of fft grid onto spdf

Nfreq

frequency at which to resample nis

Value

output from the MCMC run


MALAlgcpMultitypeSpatial.PlusPars function

Description

A function to run the MCMC algorithm for multivariate spatial point process data. Not for general purpose use.

Usage

MALAlgcpMultitypeSpatial.PlusPars(
  mcmcloop,
  inits,
  adaptivescheme,
  M,
  N,
  Mext,
  Next,
  mcens,
  ncens,
  formulaList,
  zml,
  Zmat,
  model.priorsList,
  model.initsList,
  fftgrid,
  spatial.covmodelList,
  nis,
  cellarea,
  spatialvals,
  cellInside,
  MCMCdiag,
  gradtrunc,
  gridfun,
  gridav,
  marks,
  ntypes,
  d
)

Arguments

mcmcloop

details of the mcmc loop

inits

initial values

adaptivescheme

the adaptive MCMC scheme

M

number of grid cells in x direction

N

number of grid cells in y direction

Mext

number of extended grid cells in x direction

Next

number of extended grid cells in y direction

mcens

centroids in x direction

ncens

centroids in y direction

formulaList

a list of formula objects of the form X ~ var1 + var2 etc.

zml

list of design matrices

Zmat

a design matrix constructed using getZmat

model.priorsList

list of model priors, see lgcpPriors

model.initsList

list of model initial values, see lgcpInits

fftgrid

an objects of class FFTgrid, see genFFTgrid

spatial.covmodelList

list of spatial covariance models constructed using CovFunction

nis

cell counts on the etended grid

cellarea

the cell area

spatialvals

inerpolated poisson offset on fft grid

cellInside

0-1 matrix indicating inclusion in the observation window

MCMCdiag

not used

gradtrunc

gradient truncation parameter

gridfun

used to specify other actions to be taken, e.g. dumping MCMC output to disk.

gridav

used for computing Monte Carlo expectations online

marks

the marks from the marked ppp object

ntypes

the number of types being analysed

d

matrix of toral distances

Value

output from the MCMC run


MALAlgcpSpatial function

Description

ADVANCED USE ONLY A function to perform MALA for the spatial only case

Usage

MALAlgcpSpatial(
  mcmcloop,
  inits,
  adaptivescheme,
  M,
  N,
  Mext,
  Next,
  sigma,
  phi,
  mu,
  nis,
  cellarea,
  spatialvals,
  scaleconst,
  rootQeigs,
  invrootQeigs,
  cellInside,
  MCMCdiag,
  gradtrunc,
  gridfun,
  gridav,
  mcens,
  ncens
)

Arguments

mcmcloop

an mcmcLoop object

inits

initial values from mcmc.control

adaptivescheme

adaptive scheme from mcmc.control

M

number of cells in x direction on output grid

N

number of cells in y direction on output grid

Mext

number of cells in x direction on extended output grid

Next

number of cells in y direction on extended output grid

sigma

spatial covariance parameter sigma

phi

spatial covariance parameter phi

mu

spatial covariance parameter mu

nis

cell counts matrix

cellarea

area of cells

spatialvals

spatial at risk, function lambda, interpolated onto the requisite grid

scaleconst

expected number of observations

rootQeigs

square root of eigenvalues of precision matrix

invrootQeigs

inverse square root of eigenvalues of precision matrix

cellInside

logical matrix dictating whether cells are inside the observation window

MCMCdiag

defunct

gradtrunc

gradient truncation parameter

gridfun

grid functions

gridav

grid average functions

mcens

x-coordinates of cell centroids

ncens

y-coordinates of cell centroids

Value

object passed back to lgcpPredictSpatial


MALAlgcpSpatial.PlusPars function

Description

A function to run the MCMC algorithm for spatial point process data. Not for general purpose use.

Usage

MALAlgcpSpatial.PlusPars(
  mcmcloop,
  inits,
  adaptivescheme,
  M,
  N,
  Mext,
  Next,
  mcens,
  ncens,
  formula,
  Zmat,
  model.priors,
  model.inits,
  fftgrid,
  spatial.covmodel,
  nis,
  cellarea,
  spatialvals,
  cellInside,
  MCMCdiag,
  gradtrunc,
  gridfun,
  gridav,
  d
)

Arguments

mcmcloop

details of the mcmc loop

inits

initial values

adaptivescheme

the adaptive MCMC scheme

M

number of grid cells in x direction

N

number of grid cells in y direction

Mext

number of extended grid cells in x direction

Next

number of extended grid cells in y direction

mcens

centroids in x direction

ncens

centroids in y direction

formula

a formula object of the form X ~ var1 + var2 etc.

Zmat

design matrix constructed using getZmat

model.priors

model priors, constructed using lgcpPrior

model.inits

initial values for the MCMC

fftgrid

an objects of class FFTgrid, see genFFTgrid

spatial.covmodel

spatial covariance model, consructed with CovFunction

nis

cell counts on the etended grid

cellarea

the cell area

spatialvals

inerpolated poisson offset on fft grid

cellInside

0-1 matrix indicating inclusion in the observation window

MCMCdiag

not used

gradtrunc

gradient truncation parameter

gridfun

used to specify other actions to be taken, e.g. dumping MCMC output to disk.

gridav

used for computing Monte Carlo expectations online

d

matrix of toral distances

Value

output from the MCMC run


MALAlgcpSpatioTemporal.PlusPars function

Description

A function to run the MCMC algorithm for spatiotemporal point process data. Not for general purpose use.

Usage

MALAlgcpSpatioTemporal.PlusPars(
  mcmcloop,
  inits,
  adaptivescheme,
  M,
  N,
  Mext,
  Next,
  mcens,
  ncens,
  formula,
  ZmatList,
  model.priors,
  model.inits,
  fftgrid,
  spatial.covmodel,
  nis,
  tdiff,
  cellarea,
  spatialvals,
  cellInside,
  MCMCdiag,
  gradtrunc,
  gridfun,
  gridav,
  d,
  aggtimes,
  spatialOnlyCovariates
)

Arguments

mcmcloop

details of the mcmc loop

inits

initial values

adaptivescheme

the adaptive MCMC scheme

M

number of grid cells in x direction

N

number of grid cells in y direction

Mext

number of extended grid cells in x direction

Next

number of extended grid cells in y direction

mcens

centroids in x direction

ncens

centroids in y direction

formula

a formula object of the form X ~ var1 + var2 etc.

ZmatList

list of design matrices constructed using getZmat

model.priors

model priors, constructed using lgcpPrior

model.inits

initial values for the MCMC

fftgrid

an objects of class FFTgrid, see genFFTgrid

spatial.covmodel

spatial covariance model, consructed with CovFunction

nis

cell counts on the etended grid

tdiff

vector of time differences

cellarea

the cell area

spatialvals

inerpolated poisson offset on fft grid

cellInside

0-1 matrix indicating inclusion in the observation window

MCMCdiag

not used

gradtrunc

gradient truncation parameter

gridfun

used to specify other actions to be taken, e.g. dumping MCMC output to disk.

gridav

used for computing Monte Carlo expectations online

d

matrix of toral distances

aggtimes

the aggregate times

spatialOnlyCovariates

whether this is a 'spatial' only problem

Value

output from the MCMC run


matchcovariance function

Description

A function to match the covariance matrix of a Gaussian Field with an approximate GMRF with neighbourhood size ns.

Usage

matchcovariance(
  xg,
  yg,
  ns,
  sigma,
  phi,
  model,
  additionalparameters,
  verbose = TRUE,
  r = 1,
  method = "Nelder-Mead"
)

Arguments

xg

x grid must be equally spaced

yg

y grid must be equally spaced

ns

neighbourhood size

sigma

spatial variability parameter

phi

spatial dependence parameter

model

covariance model, see ?CovarianceFct

additionalparameters

additional parameters for chosen covariance model

verbose

whether or not to print stuff generated by the optimiser

r

parameter used in optimisation, see Rue and Held (2005) pp 188. default value 1.

method

The choice of optimising routine must either be 'Nelder-Mead' or 'BFGS'. see ?optim

Value

...


maternCovFct15 function

Description

A function to declare and also evaluate an Matern 1.5 covariance function.

Usage

maternCovFct15(d, CovParameters)

Arguments

d

toral distance

CovParameters

parameters of the latent field, an object of class "CovParamaters".

Value

the exponential covariance function

Author(s)

Dominic Schumacher

See Also

CovFunction.function, RandomFieldsCovFct, SpikedExponentialCovFct


maternCovFct25 function

Description

A function to declare and also evaluate an Matern 2.5 covariance function.

Usage

maternCovFct25(d, CovParameters)

Arguments

d

toral distance

CovParameters

parameters of the latent field, an object of class "CovParamaters".

Value

the exponential covariance function

Author(s)

Dominic Schumacher

See Also

CovFunction.function, RandomFieldsCovFct, SpikedExponentialCovFct


iterator for MCMC loops

Description

control an MCMC loop with this iterator

Usage

mcmcLoop(N, burnin, thin, trim = TRUE, progressor = mcmcProgressPrint)

Arguments

N

number of iterations

burnin

length of burn-in

thin

frequency of thinning

trim

whether to cut off iterations after the last retained iteration

progressor

a function that returns a progress object


mcmcpars function

Description

A function for setting MCMC options in a run of lgcpPredict for example.

Usage

mcmcpars(mala.length, burnin, retain, inits = NULL, adaptivescheme)

Arguments

mala.length

default = 100,

burnin

default = floor(mala.length/2),

retain

thinning parameter eg operated on chain every 'retain' iteration (eg store output or compute some posterior functional)

inits

optional initial values for MCMC

adaptivescheme

the type of adaptive mcmc to use, see ?constanth (constant h) or ?andrieuthomsh (adaptive MCMC of Andrieu and Thoms (2008))

Value

mcmc parameters

See Also

lgcpPredict


null progress monitor

Description

a progress monitor that does nothing

Usage

mcmcProgressNone(mcmcloop)

Arguments

mcmcloop

an mcmc loop iterator

Value

a progress monitor


printing progress monitor

Description

a progress monitor that prints each iteration

Usage

mcmcProgressPrint(mcmcloop)

Arguments

mcmcloop

an mcmc loop iterator

Value

a progress monitor


text bar progress monitor

Description

a progress monitor that uses a text progress bar

Usage

mcmcProgressTextBar(mcmcloop)

Arguments

mcmcloop

an mcmc loop iterator

Value

a progress monitor


graphical progress monitor

Description

a progress monitor that uses tcltk dialogs

Usage

mcmcProgressTk(mcmcloop)

Arguments

mcmcloop

an mcmc loop iterator

Value

a progress monitor


mcmctrace function

Description

Generic function to extract the information required to produce MCMC trace plots.

Usage

mcmctrace(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method mcmctrace


mcmctrace.lgcpPredict function

Description

If MCMCdiag was positive when lgcpPredict was called, then this retrieves information from the chains stored.

Usage

## S3 method for class 'lgcpPredict'
mcmctrace(obj, ...)

Arguments

obj

an object of class lgcpPredict

...

additional arguments

Value

returns the saved MCMC chains in an object of class mcmcdiag.

See Also

lgcpPredict, plot.mcmcdiag


meanfield function

Description

Generic function to extract the mean of the latent field Y.

Usage

meanfield(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method meanfield


meanfield.lgcpPredict function

Description

This is an accessor function for objects of class lgcpPredict and returns the mean of the field Y as an lgcpgrid object.

Usage

## S3 method for class 'lgcpPredict'
meanfield(obj, ...)

Arguments

obj

an object of class lgcpPredict

...

additional arguments

Value

returns the cell-wise mean of Y computed via Monte Carlo.

See Also

lgcpPredict, lgcpgrid


meanfield.lgcpPredictINLA function

Description

A function to return the mean of the latent field from a call to lgcpPredictINLA output.

Usage

## S3 method for class 'lgcpPredictINLA'
meanfield(obj, ...)

Arguments

obj

an object of class lgcpPredictINLA

...

other arguments

Value

the mean of the latent field


MonteCarloAverage function

Description

This function creates an object of class MonteCarloAverage. The purpose of the function is to compute Monte Carlo expectations online in the function lgcpPredict, it is set in the argument gridmeans of the argument output.control.

Usage

MonteCarloAverage(funlist, lastonly = TRUE)

Arguments

funlist

a character vector of names of functions, each accepting single argument Y

lastonly

compute average using only time T? (see ?lgcpPredict for definition of T)

Details

A Monte Carlo Average is computed as:

Eπ(Yt1:t2Xt1:t2)[g(Yt1:t2)]1ni=1ng(Yt1:t2(i))E_{\pi(Y_{t_1:t_2}|X_{t_1:t_2})}[g(Y_{t_1:t_2})] \approx \frac1n\sum_{i=1}^n g(Y_{t_1:t_2}^{(i)})

where gg is a function of interest, Yt1:t2(i)Y_{t_1:t_2}^{(i)} is the iith retained sample from the target and nn is the total number of retained iterations. For example, to compute the mean of Yt1:t2Y_{t_1:t_2} set,

g(Yt1:t2)=Yt1:t2,g(Y_{t_1:t_2}) = Y_{t_1:t_2},

the output from such a Monte Carlo average would be a set of t2t1t_2-t_1 grids, each cell of which being equal to the mean over all retained iterations of the algorithm (NOTE: this is just an example computation, in practice, there is no need to compute the mean on line explicitly, as this is already done by defaul in lgcpPredict). For further examples, see below. The option last=TRUE computes,

Eπ(Yt1:t2Xt1:t2)[g(Yt2)],E_{\pi(Y_{t_1:t_2}|X_{t_1:t_2})}[g(Y_{t_2})],

so in this case the expectation over the last time point only is computed. This can save computation time.

Value

object of class MonteCarloAverage

See Also

setoutput, lgcpPredict, GAinitialise, GAupdate, GAfinalise, GAreturnvalue, exceedProbs

Examples

fun1 <- function(x){return(x)}   # gives the mean
fun2 <- function(x){return(x^2)} # computes E(X^2). Can be used with the 
                                 # mean to compute variances, since 
                                 # Var(X) = E(X^2) - E(X)^2
fun3 <- exceedProbs(c(1.5,2,3))  # exceedance probabilities, 
                                 #see ?exceedProbs
mca <- MonteCarloAverage(c("fun1","fun2","fun3"))
mca2 <- MonteCarloAverage(c("fun1","fun2","fun3"),lastonly=TRUE)

mstppp function

Description

Generic function used in the construction of marked space-time planar point patterns. An mstppp object is like an stppp object, but with an extra component containing a data frame (the mark information).

Usage

mstppp(P, ...)

Arguments

P

an object

...

additional arguments

Details

Observations are assumed to occur in the plane and the observation window is assumed not to change over time.

Value

method mstppp

See Also

mstppp, mstppp.ppp, mstppp.list


mstppp.list function

Description

Construct a marked space-time planar point pattern from a list object

Usage

## S3 method for class 'list'
mstppp(P, ...)

Arguments

P

list object containing $xyt, an (n x 3) matrix corresponding to (x,y,t) values; $tlim, a vector of length 2 givign the observation time window, $window giving an owin spatial observation winow, see ?owin for more details, and $data, a data frame containing the collection of marks

...

additional arguments

Value

an object of class mstppp

See Also

mstppp, mstppp.ppp,


mstppp.ppp function

Description

Construct a marked space-time planar point pattern from a ppp object

Usage

## S3 method for class 'ppp'
mstppp(P, t, tlim, data, ...)

Arguments

P

a spatstat ppp object

t

a vector of length P$n

tlim

a vector of length 2 specifying the observation time window

data

a data frame containing the collection of marks

...

additional arguments

Value

an object of class mstppp

See Also

mstppp, mstppp.list


mstppp.stppp function

Description

Construct a marked space-time planar point pattern from an stppp object

Usage

## S3 method for class 'stppp'
mstppp(P, data, ...)

Arguments

P

an lgcp stppp object

data

a data frame containing the collection of marks

...

additional arguments

Value

an object of class mstppp

See Also

mstppp, mstppp.list


muEst function

Description

Computes a non-parametric estimate of mu(t). For the purposes of performing prediction, the alternatives are: (1) use a parameteric model as in Diggle P, Rowlingson B, Su T (2005), or (2) a constantInTime model.

Usage

muEst(xyt, ...)

Arguments

xyt

an stppp object

...

additional arguments to be passed to lowess

Value

object of class temporalAtRisk giving the smoothed mut using the lowess function

References

  1. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/

  2. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  3. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

temporalAtRisk, constantInTime, ginhomAverage, KinhomAverage, spatialparsEst, thetaEst, lambdaEst


multiply.list function

Description

This function multiplies the elements of two list objects together and returns the result in another list object.

Usage

multiply.list(list1, list2)

Arguments

list1

a list of objects that could be summed using "+"

list2

a list of objects that could be summed using "+"

Value

a list with ith entry the sum of list1[[i]] and list2[[i]]


neattable function

Description

Function to print right-aligned tables to the console.

Usage

neattable(mat, indent = 0)

Arguments

mat

a numeric or character matrix object

indent

indent

Value

prints to screen with specified indent

Examples

mat <- rbind(c("one","two","three"),matrix(round(runif(9),3),3,3))
neattable(mat)

neigh2D function

Description

A function to compute the neighbours of a cell on a toral grid

Usage

neigh2D(i, j, ns, M, N)

Arguments

i

cell index i

j

cell index j

ns

number of neighbours either side

M

size of grid in x direction

N

size of grid in y direction

Value

the cell indices of the neighbours


next step of an MCMC chain

Description

just a wrapper for nextElem really.

Usage

nextStep(object)

Arguments

object

an mcmc loop object


nullAverage function

Description

A null scheme, that does not perform any computation in the running of lgcpPredict, it is the default value of gridmeans in the argument output.control.

Usage

nullAverage()

Value

object of class nullAverage

See Also

setoutput, lgcpPredict, GAinitialise, GAupdate, GAfinalise, GAreturnvalue


nullFunction function

Description

This is a null function and performs no action.

Usage

nullFunction()

Value

object of class nullFunction

See Also

setoutput, GFinitialise, GFupdate, GFfinalise, GFreturnvalue


numCases function

Description

A function used in conjunction with the function "expectation" to compute the expected number of cases in each computational grid cell. Currently only implemented for spatial processes (lgcpPredictSpatialPlusPars and lgcpPredictAggregateSpatialPlusPars).

Usage

numCases(Y, beta, eta, Z, otherargs)

Arguments

Y

the latent field

beta

the main effects

eta

the parameters of the latent field

Z

the design matrix

otherargs

other arguments to the function (see vignette "Bayesian_lgcp" for an explanation)

Value

the number of cases in each cell

See Also

expectation, lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars

Examples

## Not run: ex <- expectation(lg,numCases)[[1]] # lg is output from spatial LGCP MCMC

osppp2latlon function

Description

A function to transform a ppp object in the OSGB projection (epsg:27700) to a ppp object in the latitude/longitude (epsg:4326) projection.

Usage

osppp2latlon(obj)

Arguments

obj

a ppp object in OSGB

Value

a pppobject in Lat/Lon


osppp2merc function

Description

A function to transform a ppp object in the OS GB projection (epsg:27700) to a ppp object in the Mercator (epsg:3857) projection.

Usage

osppp2merc(obj)

Arguments

obj

a ppp object in OSGB

Value

a ppp object in Mercator


paramprec function

Description

A function to compute the precision matrix of a GMRF on an M x N toral grid with neighbourhood size ns. Note that the precision matrix is block circulant. The returned function operates on a parameter vector as in Rue and Held (2005) pp 187.

Usage

paramprec(ns, M, N)

Arguments

ns

neighbourhood size

M

number of cells in x direction

N

number of cells in y direction

Value

a function that returns the precision matrix given a parameter vector.


paramprecbase function

Description

A function to compute the parametrised base matrix of a precision matrix of a GMRF on an M x N toral grid with neighbourhood size ns. Note that the precision matrix is block circulant. The returned function operates on a parameter vector as in Rue and Held (2005) pp 187.

Usage

paramprecbase(ns, M, N, inverse = FALSE)

Arguments

ns

neighbourhood size

M

number of x cells

N

number of y cells

inverse

whether or not to compute the base matrix of the inverse precision matrix (ie the covariance matrix). default is FALSE

Value

a functioin that returns the base matrix of the precision matrix


parautocorr function

Description

A function to produce autocorrelation plots for the paramerers beta and eta from a call to the function lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars or lgcpPredictMultitypeSpatialPlusPars

Usage

parautocorr(obj, xlab = "Lag", ylab = NULL, main = "", ask = TRUE, ...)

Arguments

obj

an object produced by a call to lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars orlgcpPredictMultitypeSpatialPlusPars

xlab

optional label for x-axis, there is a sensible default.

ylab

optional label for y-axis, there is a sensible default.

main

optional title of the plot, there is a sensible default.

ask

the paramter "ask", see ?par

...

other arguments passed to the function "hist"

Value

produces autocorrelation plots of the parameters beta and eta

See Also

ltar, autocorr, traceplots, parsummary, textsummary, priorpost, postcov, exceedProbs, betavals, etavals


parsummary function

Description

A function to produce a summary table for the parameters beta and eta from a call to the function lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars or lgcpPredictMultitypeSpatialPlusPars

Usage

parsummary(obj, expon = TRUE, LaTeX = FALSE, ...)

Arguments

obj

an object produced by a call to lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars orlgcpPredictMultitypeSpatialPlusPars

expon

whether to exponentiate the results, so that the parameters beta haev the interpretation of "relative risk per unit increase in the covariate" default is TRUE

LaTeX

whether to print paramter names using LaTeX symbols (if the table is later to be exported to a LaTeX document)

...

other arguments

Value

a data frame containing the median, 0.025 and 0.975 quantiles.

See Also

ltar, autocorr, parautocorr, traceplots, textsummary, priorpost, postcov, exceedProbs, betavals, etavals


plot.fromSPDF function

Description

Plot method for objects of class fromSPDF.

Usage

## S3 method for class 'fromSPDF'
plot(x, ...)

Arguments

x

an object of class spatialAtRisk

...

additional arguments

Value

prints the object


plot.fromXYZ function

Description

Plot method for objects of class fromXYZ.

Usage

## S3 method for class 'fromXYZ'
plot(x, ...)

Arguments

x

object of class spatialAtRisk

...

additional arguments

Value

an image plot


plot.lgcpAutocorr function

Description

Plots lgcpAutocorr objects: output from autocorr

Usage

## S3 method for class 'lgcpAutocorr'
plot(x, sel = 1:dim(x)[3], ask = TRUE, crop = TRUE, plotwin = FALSE, ...)

Arguments

x

an object of class lgcpAutocorr

sel

vector of integers between 1 and grid$len: which grids to plot. Default NULL, in which case all grids are plotted.

ask

logical; if TRUE the user is asked before each plot

crop

whether or not to crop to bounding box of observation window

plotwin

logical whether to plot the window attr(x,"window"), default is FALSE

...

other arguments passed to image.plot

Value

a plot

See Also

autocorr

Examples

## Not run: ac <- autocorr(lg,qt=c(1,2,3))
                          # assumes that lg has class lgcpPredict
## Not run: plot(ac)

plot.lgcpgrid function

Description

This is a wrapper function for image.lgcpgrid

Usage

## S3 method for class 'lgcpgrid'
plot(x, sel = 1:x$len, ask = TRUE, ...)

Arguments

x

an object of class lgcpgrid

sel

vector of integers between 1 and grid$len: which grids to plot. Default NULL, in which case all grids are plotted.

ask

logical; if TRUE the user is asked before each plot

...

other arguments

Value

an image-type plot

See Also

lgcpgrid.list, lgcpgrid.array, as.list.lgcpgrid, print.lgcpgrid, summary.lgcpgrid,quantile.lgcpgrid, image.lgcpgrid


plot.lgcpPredict function

Description

Simple plotting function for objects of class lgcpPredict.

Usage

## S3 method for class 'lgcpPredict'
plot(
  x,
  type = "relrisk",
  sel = 1:x$EY.mean$len,
  plotdata = TRUE,
  ask = TRUE,
  clipWindow = TRUE,
  ...
)

Arguments

x

an object of class lgcpPredict

type

Character string: what type of plot to produce. Choices are "relrisk" (=exp(Y)); "serr" (standard error of relative risk); or "intensity" (=lambda*mu*exp(Y)).

sel

vector of integers between 1 and grid$len: which grids to plot. Default NULL, in which case all grids are plotted.

plotdata

whether or not to overlay the data

ask

logical; if TRUE the user is asked before each plot

clipWindow

whether to plot grid cells outside the observation window

...

additional arguments passed to image.plot

Value

plots the Monte Carlo mean of quantities obtained via simulation. By default the mean relative risk is plotted.

See Also

lgcpPredict


plot.lgcpQuantiles function

Description

Plots lgcpQuantiles objects: output from quantiles.lgcpPredict

Usage

## S3 method for class 'lgcpQuantiles'
plot(x, sel = 1:dim(x)[3], ask = TRUE, crop = TRUE, plotwin = FALSE, ...)

Arguments

x

an object of class lgcpQuantiles

sel

vector of integers between 1 and grid$len: which grids to plot. Default NULL, in which case all grids are plotted.

ask

logical; if TRUE the user is asked before each plot

crop

whether or not to crop to bounding box of observation window

plotwin

logical whether to plot the window attr(x,"window"), default is FALSE

...

other arguments passed to image.plot

Value

grid plotting This is a wrapper function for image.lgcpgrid

See Also

quantile.lgcpPredict

Examples

## Not run: qtiles <- quantile(lg,qt=c(0.5,0.75,0.9),fun=exp)
                          # assumed that lg has class lgcpPredict
## Not run: plot(qtiles)

plot.lgcpZmat function

Description

A function to plot lgcpZmat objects

Usage

## S3 method for class 'lgcpZmat'
plot(
  x,
  ask = TRUE,
  pow = 1,
  main = NULL,
  misscol = "black",
  obswin = NULL,
  ...
)

Arguments

x

an lgcpZmat object, see ?getZmat

ask

graphical parameter ask, see ?par

pow

power parameter, raises the image values to this power (helps with visualisation, default is 1.)

main

title for plot, default is null which gives an automatic title to the plot (the name of the covariate)

misscol

colour to identify imputed grid cells, default is yellow

obswin

optional observation window to add to plot using plot(obswin).

...

other paramters

Value

a sequence of plots of the interpolated covariate values


plot.mcmcdiag function

Description

The command plot(trace(lg)), where lg is an object of class lgcpPredict will plot the mcmc traces of a subset of the cells, provided they have been stored, see mcmpars.

Usage

## S3 method for class 'mcmcdiag'
plot(x, idx = 1:dim(x$trace)[2], ...)

Arguments

x

an object of class mcmcdiag

idx

vector of chain indices to plot, default plots all chains

...

additional arguments passed to plot

Value

plots the saved MCMC chains

See Also

mcmctrace.lgcpPredict, mcmcpars,


plot.mstppp function

Description

Plot method for mstppp objects

Usage

## S3 method for class 'mstppp'
plot(x, cols = "red", ...)

Arguments

x

an object of class mstppp

cols

optional vector of colours to plot points with

...

additional arguments passed to plot

Value

plots the mstppp object x


plot.stppp function

Description

Plot method for stppp objects

Usage

## S3 method for class 'stppp'
plot(x, ...)

Arguments

x

an object of class stppp

...

additional arguments passed to plot

Value

plots the stppp object x


plot.temporalAtRisk function

Description

Pot a temporalAtRisk object.

Usage

## S3 method for class 'temporalAtRisk'
plot(x, ...)

Arguments

x

an object

...

additional arguments

Value

print the object

See Also

temporalAtRisk, spatialAtRisk, temporalAtRisk.numeric, temporalAtRisk.function, constantInTime, constantInTime.numeric, constantInTime.stppp, print.temporalAtRisk,


plotExceed function

Description

A generic function for plotting exceedance probabilities.

Usage

plotExceed(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

generic function returning method plotExceed

See Also

plotExceed.lgcpPredict, plotExceed.array


plotExceed.array function

Description

Function for plotting exceedance probabilities stored in array objects. Used in plotExceed.lgcpPredict.

Usage

## S3 method for class 'array'
plotExceed(
  obj,
  fun,
  lgcppredict = NULL,
  xvals = NULL,
  yvals = NULL,
  window = NULL,
  cases = NULL,
  nlevel = 64,
  ask = TRUE,
  mapunderlay = NULL,
  alpha = 1,
  sub = NULL,
  ...
)

Arguments

obj

an object

fun

the name of the function used to compute exceedances (character vector of length 1). Note that the named function must be in memory.

lgcppredict

an object of class lgcpPredict that can be used to supply an observation window and x and y coordinates

xvals

optional vector giving x coords of centroids of cells

yvals

optional vector giving y coords of centroids of cells

window

optional obervation window

cases

optional xy (n x 2) matrix of locations of cases to plot

nlevel

number of colour levels to use in plot, default is 64

ask

whether or not to ask for a new plot between plotting exceedances at different thresholds.

mapunderlay

optional underlay to plot underneath maps of exceedance probabilities. Use in conjunction with rainbow parameter 'alpha' (eg alpha=0.3) to set transparency of exceedance layer.

alpha

graphical parameter takign values in [0,1] controlling transparency of exceedance layer. Default is 1.

sub

optional subtitle for plot

...

additional arguments passed to image.plot

Value

generic function returning method plotExceed

See Also

plotExceed.lgcpPredict


plotExceed.lgcpPredict function

Description

Function for plotting exceedance probabilities stored in lgcpPredict ojects.

Usage

## S3 method for class 'lgcpPredict'
plotExceed(
  obj,
  fun,
  nlevel = 64,
  ask = TRUE,
  plotcases = FALSE,
  mapunderlay = NULL,
  alpha = 1,
  ...
)

Arguments

obj

an object

fun

the name of the function used to compute exceedances (character vector of length 1). Note that the named function must be in memory.

nlevel

number of colour levels to use in plot, default is 64

ask

whether or not to ask for a new plot between plotting exceedances at different thresholds.

plotcases

whether or not to plot the cases on the map

mapunderlay

optional underlay to plot underneath maps of exceedance probabilities. Use in conjunction with rainbow parameter 'alpha' (eg alpha=0.3) to set transparency of exceedance layer.

alpha

graphical parameter takign values in [0,1] controlling transparency of exceedance layer. Default is 1.

...

additional arguments passed to image.plot

Value

plot of exceedances

See Also

lgcpPredict, MonteCarloAverage, setoutput

Examples

## Not run: exceedfun <- exceedProbs(c(1.5,2,4))
## Not run: 
    plot(lg,"exceedfun") # lg is an object of class lgcpPredict
                         # in which the Monte Carlo mean of
                         # "exceedfun" was computed
                         # see ?MonteCarloAverage and ?setoutput

## End(Not run)

plotit function

Description

A function to plot various objects. A developmental tool: not intended for general use

Usage

plotit(x)

Arguments

x

an a list, matrix, or GPrealisation object.

Value

plots the objects.


postcov function

Description

Generic function for producing plots of the posterior covariance function from a call to the function lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars or lgcpPredictMultitypeSpatialPlusPars.

Usage

postcov(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method postcov

See Also

postcov.lgcpPredictSpatialOnlyPlusParameters,postcov.lgcpPredictAggregateSpatialPlusParameters, postcov.lgcpPredictSpatioTemporalPlusParameters, postcov.lgcpPredictMultitypeSpatialPlusParameters, ltar, autocorr, parautocorr, traceplots, parsummary, textsummary, priorpost, exceedProbs, betavals, etavals


postcov.lgcpPredictAggregateSpatialPlusParameters function

Description

A function for producing plots of the posterior covariance function.

Usage

"postcov(obj,qts=c(0.025,0.5,0.975),covmodel=NULL,ask=TRUE,...)"

Arguments

obj

an lgcpPredictAggregateSpatialPlusParameters object

qts

vector of quantiles of length 3, default is 0.025, 0.5, 0.975

covmodel

the assumed covariance model. NULL by default, this information is read in from the object obj, so generally does not need to be set.

ask

parameter "ask", see ?par

...

additional arguments

Value

...

See Also

postcov.lgcpPredictSpatialOnlyPlusParameters, postcov.lgcpPredictAggregateSpatialPlusParameters, postcov.lgcpPredictSpatioTemporalPlusParameters, postcov.lgcpPredictMultitypeSpatialPlusParameters, ltar, autocorr, parautocorr, traceplots, parsummary, textsummary, priorpost, postcov, exceedProbs, betavals, etavals


postcov.lgcpPredictMultitypeSpatialPlusParameters function

Description

A function for producing plots of the posterior covariance function.

Usage

"postcov(obj,qts=c(0.025,0.5,0.975),covmodel=NULL,ask=TRUE,...)"

Arguments

obj

an lgcpPredictMultitypeSpatialPlusParameters object

qts

vector of quantiles of length 3, default is 0.025, 0.5, 0.975

covmodel

the assumed covariance model. NULL by default, this information is read in from the object obj, so generally does not need to be set.

ask

parameter "ask", see ?par

...

additional arguments

Value

plots of the posterior covariance function for each type.

See Also

postcov.lgcpPredictSpatialOnlyPlusParameters, postcov.lgcpPredictAggregateSpatialPlusParameters, postcov.lgcpPredictSpatioTemporalPlusParameters, postcov.lgcpPredictMultitypeSpatialPlusParameters, ltar, autocorr, parautocorr, traceplots, parsummary, textsummary, priorpost, postcov, exceedProbs, betavals, etavals


postcov.lgcpPredictSpatialOnlyPlusParameters function

Description

A function for producing plots of the posterior spatial covariance function.

Usage

"postcov(obj,qts=c(0.025,0.5,0.975),covmodel=NULL,ask=TRUE,...)"

Arguments

obj

an lgcpPredictSpatialOnlyPlusParameters object

qts

vector of quantiles of length 3, default is 0.025, 0.5, 0.975

covmodel

the assumed covariance model. NULL by default, this information is read in from the object obj, so generally does not need to be set.

ask

parameter "ask", see ?par

...

additional arguments

Value

a plot of the posterior covariance function.

See Also

postcov.lgcpPredictSpatialOnlyPlusParameters, postcov.lgcpPredictAggregateSpatialPlusParameters, postcov.lgcpPredictSpatioTemporalPlusParameters, postcov.lgcpPredictMultitypeSpatialPlusParameters, ltar, autocorr, parautocorr, traceplots, parsummary, textsummary, priorpost, postcov, exceedProbs, betavals, etavals


postcov.lgcpPredictSpatioTemporalPlusParameters function

Description

A function for producing plots of the posterior spatiotemporal covariance function.

Usage

"postcov(obj,qts=c(0.025,0.5,0.975),covmodel=NULL,ask=TRUE,...)"

Arguments

obj

an lgcpPredictSpatioTemporalPlusParameters object

qts

vector of quantiles of length 3, default is 0.025, 0.5, 0.975

covmodel

the assumed covariance model. NULL by default, this information is read in from the object obj, so generally does not need to be set.

ask

parameter "ask", see ?par

...

additional arguments

Value

a plot of the posterior spatial covariance function and temporal correlation function.

See Also

postcov.lgcpPredictSpatialOnlyPlusParameters, postcov.lgcpPredictAggregateSpatialPlusParameters, postcov.lgcpPredictSpatioTemporalPlusParameters, postcov.lgcpPredictMultitypeSpatialPlusParameters, ltar, autocorr, parautocorr, traceplots, parsummary, textsummary, priorpost, postcov, exceedProbs, betavals, etavals


print.dump2dir function

Description

Display function for dump2dir objects.

Usage

## S3 method for class 'dump2dir'
print(x, ...)

Arguments

x

an object of class dump2dir

...

additional arguments

Value

nothing

See Also

dump2dir,


print.fromFunction function

Description

Print method for objects of class fromFunction.

Usage

## S3 method for class 'fromFunction'
print(x, ...)

Arguments

x

an object of class spatialAtRisk

...

additional arguments

Value

prints the object


print.fromSPDF function

Description

Print method for objects of class fromSPDF.

Usage

## S3 method for class 'fromSPDF'
print(x, ...)

Arguments

x

an object of class spatialAtRisk

...

additional arguments

Value

prints the object


print.fromXYZ function

Description

Print method for objects of class fromXYZ.

Usage

## S3 method for class 'fromXYZ'
print(x, ...)

Arguments

x

an object of class spatialAtRisk

...

additional arguments

Value

prints the object


print.gridaverage function

Description

Print method for gridaverage objects

Usage

## S3 method for class 'gridaverage'
print(x, ...)

Arguments

x

an object of class gridaverage

...

other arguments

Value

just prints out details


print.lgcpgrid function

Description

Print method for lgcp grid objects.

Usage

## S3 method for class 'lgcpgrid'
print(x, ...)

Arguments

x

an object of class lgcpgrid

...

other arguments

Value

just prints out details to the console

See Also

lgcpgrid.list, lgcpgrid.array, as.list.lgcpgrid, summary.lgcpgrid quantile.lgcpgrid image.lgcpgrid plot.lgcpgrid


print.lgcpPredict function

Description

Print method for lgcpPredict objects.

Usage

## S3 method for class 'lgcpPredict'
print(x, ...)

Arguments

x

an object of class lgcpPredict

...

additional arguments

Value

just prints information to the screen

See Also

lgcpPredict


print.mcmc function

Description

print method print an mcmc iterator's details

Usage

## S3 method for class 'mcmc'
print(x, ...)

Arguments

x

a mcmc iterator

...

other args


print.mstppp function

Description

Print method for mstppp objects

Usage

## S3 method for class 'mstppp'
print(x, ...)

Arguments

x

an object of class mstppp

...

additional arguments

Value

prints the mstppp object x


print.stapp function

Description

Print method for stapp objects

Usage

## S3 method for class 'stapp'
print(x, printhead = TRUE, ...)

Arguments

x

an object of class stapp

printhead

whether or not to print the head of the counts matrix

...

additional arguments

Value

prints the stapp object x


print.stppp function

Description

Print method for stppp objects

Usage

## S3 method for class 'stppp'
print(x, ...)

Arguments

x

an object of class stppp

...

additional arguments

Value

prints the stppp object x


print.temporalAtRisk function

Description

Printing method for temporalAtRisk objects.

Usage

## S3 method for class 'temporalAtRisk'
print(x, ...)

Arguments

x

an object

...

additional arguments

Value

print the object

See Also

temporalAtRisk, spatialAtRisk, temporalAtRisk.numeric, temporalAtRisk.function, constantInTime, constantInTime.numeric, constantInTime.stppp, plot.temporalAtRisk


priorpost function

Description

A function to plot the prior and posterior densities of the model parameters eta and beta. The prior appears as a red line and the posterior appears as a histogram.

Usage

priorpost(
  obj,
  breaks = 30,
  xlab = NULL,
  ylab = "Density",
  main = "",
  ask = TRUE,
  ...
)

Arguments

obj

an object produced by a call to lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars or lgcpPredictMultitypeSpatialPlusPars

breaks

"breaks" paramter from the function "hist"

xlab

optional label for x-axis, there is a sensible default.

ylab

optional label for y-axis, there is a sensible default.

main

optional title of the plot, there is a sensible default.

ask

the paramter "ask", see ?par

...

other arguments passed to the function "hist"

Value

plots of the prior and posterior of the model parameters eta and beta.

See Also

ltar, autocorr, parautocorr, traceplots, parsummary, textsummary, postcov, exceedProbs, betavals, etavals


PriorSpec function

Description

Generic for declaring that an object is of valid type for use as as prior in lgcp. For further details and examples, see the vignette "Bayesian_lgcp".

Usage

PriorSpec(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method PriorSpec

See Also

PriorSpec.list


PriorSpec.list function

Description

Method for declaring a Bayesian prior density in lgcp. Checks to confirm that the object obj has the requisite components for functioning as a prior.

Usage

## S3 method for class 'list'
PriorSpec(obj, ...)

Arguments

obj

a list object defining a prior , see ?GaussianPrior and ?LogGaussianPrior

...

additional arguments

Value

an object suitable for use in a call to the MCMC routines

See Also

GaussianPrior, LogGaussianPrior

Examples

## Not run: PriorSpec(LogGaussianPrior(mean=log(c(1,500)),variance=diag(0.15,2)))
## Not run: PriorSpec(GaussianPrior(mean=rep(0,9),variance=diag(10^6,9)))

quantile.lgcpgrid function

Description

Quantile method for lgcp objects. This just applies the quantile function to each of the elements of x$grid

Usage

## S3 method for class 'lgcpgrid'
quantile(x, ...)

Arguments

x

an object of class lgcpgrid

...

other arguments

Value

Quantiles per grid, see ?quantile for further options

See Also

lgcpgrid.list, lgcpgrid.array, as.list.lgcpgrid, print.lgcpgrid, summary.lgcpgrid, image.lgcpgrid, plot.lgcpgrid


quantile.lgcpPredict function

Description

This function requires data to have been dumped to disk: see ?dump2dir and ?setoutput. The routine quantile.lgcpPredict computes quantiles of functions of Y. For example, to get cell-wise quantiles of exceedance probabilities, set fun=exp. Since computign the quantiles is an expensive operation, the option to output the quantiles on a subregion of interest is also provided (by setting the argument inWindow, which has a sensible default).

Usage

## S3 method for class 'lgcpPredict'
quantile(
  x,
  qt,
  tidx = NULL,
  fun = NULL,
  inWindow = x$xyt$window,
  crop2parentwindow = TRUE,
  startidx = 1,
  sampcount = NULL,
  ...
)

Arguments

x

an object of class lgcpPredict

qt

a vector of the required quantiles

tidx

the index number of the the time interval of interest, default is the last time point.

fun

a 1-1 function (default the identity function) to be applied cell-wise to the grid. Must be able to evaluate sapply(vec,fun) for vectors vec.

inWindow

an observation owin window on which to compute the quantiles, can speed up calculation. Default is x$xyt$window.

crop2parentwindow

logical: whether to only compute the quantiles for cells inside x$xyt$window (the 'parent window')

startidx

optional starting sample index for computing quantiles. Default is 1.

sampcount

number of samples to include in computation of quantiles after startidx. Default is all

...

additional arguments

Value

an array, the [,,i]th slice being the grid of cell-wise quantiles, qt[i], of fun(Y), where Y is the MCMC output dumped to disk.

See Also

lgcpPredict, dump2dir, setoutput, plot.lgcpQuantiles


RandomFieldsCovFct function

Description

A function to declare and also evaluate an covariance function from the RandomFields Package. See ?CovarianceFct. Note that the present version of lgcp only offers estimation for sigma and phi, any additional paramters are treated as fixed.

Usage

RandomFieldsCovFct(model, additionalparameters = c())

Arguments

model

the choice of model e.g. "matern"

additionalparameters

additional parameters for chosen covariance model. See ?CovarianceFct

Value

a covariance function from the RandomFields package

See Also

CovFunction.function, exponentialCovFct, SpikedExponentialCovFct, CovarianceFct

Examples

## Not run: RandomFieldsCovFct(model="matern",additionalparameters=1)

raster.lgcpgrid function

Description

A function to convert lgcpgrid objects into either a raster object, or a RasterBrick object.

Usage

## S3 method for class 'lgcpgrid'
raster(x, crs = NA, transpose = FALSE, ...)

Arguments

x

an lgcpgrid object

crs

PROJ4 type description of a map projection (optional). See ?raster

transpose

Logical. Transpose the data? See ?brick method for array

...

additional arguments

Value

...


rescale.mstppp function

Description

Rescale an mstppp object. Similar to rescale.ppp

Usage

## S3 method for class 'mstppp'
rescale(X, s, unitname)

Arguments

X

an object of class mstppp

s

scale as in rescale.ppp: x and y coordinaes are scaled by 1/s

unitname

parameter as defined in ?rescale

Value

a ppp object without observation times


rescale.stppp function

Description

Rescale an stppp object. Similar to rescale.ppp

Usage

## S3 method for class 'stppp'
rescale(X, s, unitname)

Arguments

X

an object of class stppp

s

scale as in rescale.ppp: x and y coordinaes are scaled by 1/s

unitname

parameter as defined in ?rescale

Value

a ppp object without observation times


reset iterator

Description

call this to reset an iterator's state to the initial

Usage

resetLoop(obj)

Arguments

obj

an mcmc iterator


rgauss function

Description

A function to simulate a Gaussian field on a regular square lattice, the returned object is of class lgcpgrid.

Usage

rgauss(
  n = 1,
  range = c(0, 1),
  ncells = 128,
  spatial.covmodel = "exponential",
  model.parameters = lgcppars(sigma = 2, phi = 0.1),
  covpars = c(),
  ext = 2
)

Arguments

n

the number of realisations to generate. Default is 1.

range

a vector of length 2, defining the left-most and right most cell centroids in the x-direction. Note that the centroids in the y-direction are the same as those in the x-direction.

ncells

the number of cells, typially a power of 2

spatial.covmodel

spatial covariance function, default is exponential, see ?CovarianceFct

model.parameters

parameters of model, see ?lgcppars. Only set sigma and phi for spatial model.

covpars

vector of additional parameters for spatial covariance function, in order they appear in chosen model in ?CovarianceFct

ext

how much to extend the parameter space by. Default is 2.

Value

an lgcp grid object containing the simulated field(s).


roteffgain function

Description

Compute whether there might be any advantage in rotating the observation window in the object xyt for a proposed cell width.

Usage

roteffgain(xyt, cellwidth)

Arguments

xyt

an object of class stppp

cellwidth

size of grid on which to do MALA

Value

whether or not there woud be any efficiency gain in the MALA by rotating window

See Also

getRotation.stppp


rotmat function

Description

This function returns a rotation matrix corresponding to an anticlockwise rotation of theta radians about the origin

Usage

rotmat(theta)

Arguments

theta

an angle in radians

Value

the transformation matrix corresponding to an anticlockwise rotation of theta radians about the origin


rr function

Description

Generic function to return relative risk.

Usage

rr(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method rr

See Also

lgcpPredict, rr.lgcpPredict


rr.lgcpPredict function

Description

Accessor function returning the relative risk = exp(Y) as an lgcpgrid object.

Usage

## S3 method for class 'lgcpPredict'
rr(obj, ...)

Arguments

obj

an lgcpPredict object

...

additional arguments

Value

the relative risk as computed my MCMC

See Also

lgcpPredict


samplePosterior function

Description

A function to draw a sample from the posterior of a spatial LGCP. Randomly selects an index i, and returns the ith value of eta, the ith value of beta and the ith value of Y as a named list.

Usage

samplePosterior(x)

Arguments

x

an object of class lgcpPredictSpatialOnlyPlusParameters or lgcpPredictAggregateSpatialPlusParameters

Value

a sample from the posterior named list object with names elements "eta", "beta" and "Y".


segProbs function

Description

A function to compute segregation probabilities from a multivariate LGCP. See the vignette "Bayesian_lgcp" for a full explanation of this.

Usage

segProbs(obj, domprob)

Arguments

obj

an lgcpPredictMultitypeSpatialPlusParameters object

domprob

the threshold beyond which we declare a type as dominant e.g. a value of 0.8 would mean we would consider each type to be dominant if the conditional probability of an event of a given type at that location exceeded 0.8.

Details

We suppose there are K point types of interest. The model for point-type k is as follows:

X_k(s) ~ Poisson[R_k(s)]

R_k(s) = C_A lambda_k(s) exp[Z_k(s)beta_k+Y_k(s)]

Here X_k(s) is the number of events of type k in the computational grid cell containing the point s, R_k(s) is the Poisson rate, C_A is the cell area, lambda_k(s) is a known offset, Z_k(s) is a vector of measured covariates and Y_i(s) where i = 1,...,K+1 are latent Gaussian processes on the computational grid. The other parameters in the model are beta_k , the covariate effects for the kth type; and eta_i = [log(sigma_i),log(phi_i)], the parameters of the process Y_i for i = 1,...,K+1 on an appropriately transformed (again, in this case log) scale.

The term 'conditional probability of type k' means the probability that at a particular location, x, there will be an event of type k, we denote this p_k(x).

It is also of interest to scientists to be able to illustrate spatial regions where a genotype dominates a posteriori. We say that type k dominates at position x if p_k(x)>c, where c (the parameter domprob) is a threshold is a threshold set by the user. Let A_k(c,q) denote the set of locations x for which P[p_k(x)>c|X] > q.

As the quantities c and q tend to 1 each area A_k(c,p) shrinks towards the empty set; this happens more slowly in a highly segregated pattern compared with a weakly segregated one.

The function segProbs computes P[p_k(x)>c|X] for each type, from which plots of P[p_k(x)>c|X] > q can be produced.

Value

an lgcpgrid object contatining the segregation probabilities.


seintens function

Description

Generic function to return the standard error of the Poisson Intensity.

Usage

seintens(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method seintens

See Also

lgcpPredict, seintens.lgcpPredict


seintens.lgcpPredict function

Description

Accessor function returning the standard error of the Poisson intensity as an lgcpgrid object.

Usage

## S3 method for class 'lgcpPredict'
seintens(obj, ...)

Arguments

obj

an lgcpPredict object

...

additional arguments

Value

the cell-wise standard error of the Poisson intensity, as computed by MCMC.

See Also

lgcpPredict


selectObsWindow function

Description

See ?selectObsWindow.stppp for further details on usage. This is a generic function for the purpose of selecting an observation window (or more precisely a bounding box) to contain the extended FFT grid.

Usage

selectObsWindow(xyt, ...)

Arguments

xyt

an object

...

additional arguments

Value

method selectObsWindow

See Also

selectObsWindow.default, selectObsWindow.stppp


selectObsWindow.default function

Description

Default method, note at present, there is only an implementation for stppp objects.

Usage

## Default S3 method:
selectObsWindow(xyt, cellwidth, ...)

Arguments

xyt

an object

cellwidth

size of the grid spacing in chosen units (equivalent to the cell width argument in lgcpPredict)

...

additional arguments

Details

!!NOTE!! that this function also returns the grid ($xvals and $yvals) on which the FFT (and hence MALA) will be performed. It is useful to define spatialAtRiskobjects on this grid to prevent loss of information from the bilinear interpolation that takes place as part of the fitting algorithm.

Value

this is the same as selectObsWindow.stppp

See Also

spatialAtRisk selectObsWindow.stppp


selectObsWindow.stppp function

Description

This function computes an appropriate observation window on which to perform prediction. Since the FFT grid must have dimension 2^M by 2^N for some M and N, the window xyt$window, is extended to allow this to be fit in for a given cell width.

Usage

## S3 method for class 'stppp'
selectObsWindow(xyt, cellwidth, ...)

Arguments

xyt

an object of class stppp

cellwidth

size of the grid spacing in chosen units (equivalent to the cell width argument in lgcpPredict)

...

additional arguments

Details

!!NOTE!! that this function also returns the grid ($xvals and $yvals) on which the FFT (and hence MALA) will be performed. It is useful to define spatialAtRiskobjects on this grid to prevent loss of information from the bilinear interpolation that takes place as part of the fitting algorithm.

Value

a resized stppp object together with grid sizes M and N ready for FFT, together with the FFT grid locations, can be useful for estimating lambda(s)

See Also

spatialAtRisk


serr function

Description

Generic function to return standard error of relative risk.

Usage

serr(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method serr

See Also

lgcpPredict, serr.lgcpPredict


serr.lgcpPredict function

Description

Accessor function returning the standard error of relative risk as an lgcpgrid object.

Usage

## S3 method for class 'lgcpPredict'
serr(obj, ...)

Arguments

obj

an lgcpPredict object

...

additional arguments

Value

Standard error of the relative risk as computed by MCMC.

See Also

lgcpPredict


setoutput function

Description

Sets output functionality for lgcpPredict via the main functions dump2dir and MonteCarloAverage. Note that it is possible for the user to create their own gridfunction and gridmeans schemes.

Usage

setoutput(gridfunction = NULL, gridmeans = NULL)

Arguments

gridfunction

what to do with the latent field, but default this set to nothing, but could save output to a directory, see ?dump2dir

gridmeans

list of Monte Carlo averages to compute, see ?MonteCarloAverage

Value

output parameters

See Also

lgcpPredict, dump2dir, MonteCarloAverage


set the progress bar

Description

update a text progress bar. See help(txtProgressBar) for more info.

Usage

setTxtProgressBar2(pb, value, title = NULL, label = NULL)

Arguments

pb

text progress bar object

value

new value

title

ignored

label

text for end of progress bar


showGrid function

Description

Generic method for displaying the FFT grid used in computation.

Usage

showGrid(x, ...)

Arguments

x

an object

...

additional arguments

Value

generic function returning method showGrid

See Also

showGrid.default, showGrid.lgcpPredict, showGrid.stppp


showGrid.default function

Description

Default method for printing a grid to a screen. Arguments are vectors giving the x any y coordinates of the centroids.

Usage

## Default S3 method:
showGrid(x, y, ...)

Arguments

x

an vector of grid values for the x coordinates

y

an vector of grid values for the y coordinates

...

additional arguments passed to points

Value

plots grid centroids on the current graphics device

See Also

showGrid.lgcpPredict, showGrid.stppp


showGrid.lgcpPredict function

Description

This function displays the FFT grid used on a plot of an lgcpPredict object. First plot the object using for example plot(lg), where lg is an object of class lgcpPredict, then for any of the plots produced, a call to showGrid(lg,pch=="+",cex=0.5) will display the centroids of the FFT grid.

Usage

## S3 method for class 'lgcpPredict'
showGrid(x, ...)

Arguments

x

an object of class lgcpPredict

...

additional arguments passed to points

Value

plots grid centroids on the current graphics device

See Also

lgcpPredict, showGrid.default, showGrid.stppp


showGrid.stppp function

Description

If an stppp object has been created via simulation, ie using the function lgcpSim, then this function will display the grid centroids that were used in the simulation

Usage

## S3 method for class 'stppp'
showGrid(x, ...)

Arguments

x

an object of class stppp. Note this function oly applies to SIMULATED data.

...

additional arguments passed to points

Value

plots grid centroids on the current graphics device. FOR SIMULATED DATA ONLY.

See Also

lgcpSim, showGrid.default, showGrid.lgcpPredict

Examples

## Not run: xyt <- lgcpSim()
## Not run: plot(xyt)
## Not run: showGrid(xyt,pch="+",cex=0.5)

smultiply.list function

Description

This function multiplies each element of a list by a scalar constant.

Usage

smultiply.list(list, const)

Arguments

list

a list of objects that could be summed using "+"

const

a numeric constant

Value

a list with ith entry the scalar multiple of const * list[[i]]


sparsebase function

Description

A function that returns the full precision matrix in sparse format from the base of a block circulant matrix, see ?Matrix::sparseMatrix

Usage

sparsebase(base)

Arguments

base

base matrix of a block circulant matrix

Value

...


spatialAtRisk function

Description

The methods for this generic function:spatialAtRisk.default, spatialAtRisk.fromXYZ, spatialAtRisk.im, spatialAtRisk.function, spatialAtRisk.SpatialGridDataFrame, spatialAtRisk.SpatialPolygonsDataFrame and spatialAtRisk.bivden are used to represent the fixed spatial component, lambda(s) in the log-Gaussian Cox process model. Typically lambda(s) would be represented as a spatstat object of class im, that encodes population density information. However, regardless of the physical interpretation of lambda(s), in lgcp we assume that it integrates to 1 over the observation window. The above methods make sure this condition is satisfied (with the exception of the method for objects of class function), as well as providing a framework for manipulating these structures. lgcp uses bilinear interpolation to project a user supplied lambda(s) onto a discrete grid ready for inference via MCMC, this grid can be obtained via the selectObsWindow function.

Usage

spatialAtRisk(X, ...)

Arguments

X

an object

...

additional arguments

Details

Generic function used in the construction of spatialAtRisk objects. The class of spatialAtRisk objects provide a framework for describing the spatial inhomogeneity of the at-risk population, lambda(s). This is in contrast to the class of temporalAtRisk objects, which describe the global levels of the population at risk, mu(t).

Unless the user has specified lambda(s) directly by an R function (a mapping the from the real plane onto the non-negative real numbers, see ?spatialAtRisk.function), then it is only necessary to describe the population at risk up to a constant of proportionality, as the routines automatically normalise the lambda provided to integrate to 1.

For reference purposes, the following is a mathematical description of a log-Gaussian Cox Process, it is best viewed in the pdf version of the manual.

Let Y(s,t)\mathcal Y(s,t) be a spatiotemporal Gaussian process, WR2W\subset R^2 be an observation window in space and TR0T\subset R_{\geq 0} be an interval of time of interest. Cases occur at spatio-temporal positions (x,t)W×T(x,t) \in W \times T according to an inhomogeneous spatio-temporal Cox process, i.e. a Poisson process with a stochastic intensity R(x,t)R(x,t), The number of cases, XS,[t1,t2]X_{S,[t_1,t_2]}, arising in any SWS \subseteq W during the interval [t1,t2]T[t_1,t_2]\subseteq T is then Poisson distributed conditional on R()R(\cdot),

XS,[t1,t2]Poisson{St1t2R(s,t)dsdt}X_{S,[t_1,t_2]} \sim \mbox{Poisson}\left\{\int_S\int_{t_1}^{t_2} R(s,t)d sd t\right\}

Following Brix and Diggle (2001) and Diggle et al (2005), the intensity is decomposed multiplicatively as

R(s,t)=λ(s)μ(t)exp{Y(s,t)}.R(s,t) = \lambda(s)\mu(t)\exp\{\mathcal Y(s,t)\}.

In the above, the fixed spatial component, λ:R2R0\lambda:R^2\mapsto R_{\geq 0}, is a known function, proportional to the population at risk at each point in space and scaled so that

Wλ(s)ds=1,\int_W\lambda(s)d s=1,

whilst the fixed temporal component, μ:R0R0\mu:R_{\geq 0}\mapsto R_{\geq 0}, is also a known function with

μ(t)δt=E[XW,δt],\mu(t) \delta t = E[X_{W,\delta t}],

for tt in a small interval of time, δt\delta t, over which the rate of the process over WW can be considered constant.

Value

method spatialAtRisk

  1. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  2. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

selectObsWindow lgcpPredict, linklgcpSim, spatialAtRisk.default, spatialAtRisk.fromXYZ, spatialAtRisk.im, spatialAtRisk.function, spatialAtRisk.SpatialGridDataFrame, spatialAtRisk.SpatialPolygonsDataFrame, spatialAtRisk.bivden


spatialAtRisk.bivden function

Description

Creates a spatialAtRisk object from a sparr bivden object

Usage

## S3 method for class 'bivden'
spatialAtRisk(X, ...)

Arguments

X

a bivden object

...

additional arguments

Value

object of class spatialAtRisk

  1. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  2. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

lgcpPredict, linklgcpSim, spatialAtRisk.default, spatialAtRisk.fromXYZ, spatialAtRisk.im, spatialAtRisk.function, spatialAtRisk.SpatialGridDataFrame, spatialAtRisk.SpatialPolygonsDataFrame


spatialAtRisk.default function

Description

The default method for creating a spatialAtRisk object, which attempts to extract x, y and Zm values from the object using xvals, yvals and zvals.

Usage

## Default S3 method:
spatialAtRisk(X, ...)

Arguments

X

an object

...

additional arguments

Value

object of class spatialAtRisk

  1. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  2. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

lgcpPredict, linklgcpSim, spatialAtRisk.fromXYZ, spatialAtRisk.im, spatialAtRisk.function, spatialAtRisk.SpatialGridDataFrame, spatialAtRisk.SpatialPolygonsDataFrame, spatialAtRisk.bivden, xvals, yvals, zvals


spatialAtRisk.fromXYZ function

Description

Creates a spatialAtRisk object from a list of X, Y, Zm giving respectively the x and y coordinates of the grid and the 'z' values ie so that Zm[i,j] is proportional to the at-risk population at X[i], Y[j].

Usage

## S3 method for class 'fromXYZ'
spatialAtRisk(X, Y, Zm, ...)

Arguments

X

vector of x-coordinates

Y

vector of y-coordinates

Zm

matrix such that Zm[i,j] = f(x[i],y[j]) for some function f

...

additional arguments

Value

object of class spatialAtRisk

  1. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  2. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

lgcpPredict, linklgcpSim, spatialAtRisk.default, spatialAtRisk.im, spatialAtRisk.function, spatialAtRisk.SpatialGridDataFrame, spatialAtRisk.SpatialPolygonsDataFrame, spatialAtRisk.bivden


spatialAtRisk.function function

Description

Creates a spatialAtRisk object from a function mapping R^2 onto the non negative reals. Note that for spatialAtRisk objects defined in this manner, the user is responsible for ensurng that the integral of the function is 1 over the observation window of interest.

Usage

## S3 method for class ''function''
spatialAtRisk(X, warn = TRUE, ...)

Arguments

X

a function with accepts arguments x and y that returns the at risk population at coordinate (x,y), which should be a numeric of length 1

warn

whether to issue a warning or not

...

additional arguments

Value

object of class spatialAtRisk NOTE The function provided is assumed to integrate to 1 over the observation window, the user is responsible for ensuring this is the case.

  1. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  2. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

lgcpPredict, linklgcpSim, spatialAtRisk.default, spatialAtRisk.fromXYZ, spatialAtRisk.im, spatialAtRisk.SpatialGridDataFrame, spatialAtRisk.SpatialPolygonsDataFrame, spatialAtRisk.bivden


spatialAtRisk.im function

Description

Creates a spatialAtRisk object from a spatstat pixel image (im) object.

Usage

## S3 method for class 'im'
spatialAtRisk(X, ...)

Arguments

X

object of class im

...

additional arguments

Value

object of class spatialAtRisk

  1. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  2. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

lgcpPredict, linklgcpSim, spatialAtRisk.default, spatialAtRisk.fromXYZ, spatialAtRisk.function, spatialAtRisk.SpatialGridDataFrame, spatialAtRisk.SpatialPolygonsDataFrame, spatialAtRisk.bivden


spatialAtRisk.lgcpgrid function

Description

Creates a spatialAtRisk object from an lgcpgrid object

Usage

## S3 method for class 'lgcpgrid'
spatialAtRisk(X, idx = length(X$grid), ...)

Arguments

X

an lgcpgrid object

idx

in the case that X$grid is a list of length > 1, this argument specifies which element of the list to convert. By default, it is the last.

...

additional arguments

Value

object of class spatialAtRisk

  1. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  2. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

lgcpPredict, linklgcpSim, spatialAtRisk.default, spatialAtRisk.fromXYZ, spatialAtRisk.im, spatialAtRisk.function, spatialAtRisk.SpatialGridDataFrame, spatialAtRisk.SpatialPolygonsDataFrame


spatialAtRisk.SpatialGridDataFrame function

Description

Creates a spatialAtRisk object from an sp SpatialGridDataFrame object

Usage

## S3 method for class 'SpatialGridDataFrame'
spatialAtRisk(X, ...)

Arguments

X

a SpatialGridDataFrame object

...

additional arguments

Value

object of class spatialAtRisk

  1. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  2. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

lgcpPredict, linklgcpSim, spatialAtRisk.default, spatialAtRisk.fromXYZ, spatialAtRisk.im, spatialAtRisk.function, spatialAtRisk.SpatialPolygonsDataFrame, spatialAtRisk.bivden


spatialAtRisk.SpatialPolygonsDataFrame function

Description

Creates a spatialAtRisk object from a SpatialPolygonsDataFrame object.

Usage

## S3 method for class 'SpatialPolygonsDataFrame'
spatialAtRisk(X, ...)

Arguments

X

a SpatialPolygonsDataFrame object; one column of the data frame should have name "atrisk", containing the aggregate population at risk for that region

...

additional arguments

Value

object of class spatialAtRisk

  1. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  2. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

lgcpPredict, linklgcpSim, spatialAtRisk.default, spatialAtRisk.fromXYZ, spatialAtRisk.im, spatialAtRisk.function, spatialAtRisk.SpatialGridDataFrame, spatialAtRisk.bivden


spatialIntensities function

Description

Generic method for extracting spatial intensities.

Usage

spatialIntensities(X, ...)

Arguments

X

an object

...

additional arguments

Value

method spatialintensities

See Also

spatialIntensities.fromXYZ, spatialIntensities.fromSPDF


spatialIntensities.fromSPDF function

Description

Extract the spatial intensities from an object of class fromSPDF (as would have been created by spatialAtRisk.SpatialPolygonsDataFrame for example).

Usage

## S3 method for class 'fromSPDF'
spatialIntensities(X, xyt, ...)

Arguments

X

an object of class fromSPDF

xyt

object of class stppp or a list object of numeric vectors with names $x, $y

...

additional arguments

Value

normalised spatial intensities

See Also

spatialIntensities, spatialIntensities.fromXYZ


spatialIntensities.fromXYZ function

Description

Extract the spatial intensities from an object of class fromXYZ (as would have been created by spatialAtRisk for example).

Usage

## S3 method for class 'fromXYZ'
spatialIntensities(X, xyt, ...)

Arguments

X

object of class fromXYZ

xyt

object of class stppp or a list object of numeric vectors with names $x, $y

...

additional arguments

Value

normalised spatial intensities

See Also

spatialIntensities, spatialIntensities.fromSPDF


spatialparsEst function

Description

Having estimated either the pair correlation or K functions using respectively ginhomAverage or KinhomAverage, the spatial parameters sigma and phi can be estimated. This function provides a visual tool for this estimation procedure.

Usage

spatialparsEst(
  gk,
  sigma.range,
  phi.range,
  spatial.covmodel,
  covpars = c(),
  guess = FALSE
)

Arguments

gk

an R object; output from the function KinhomAverage or ginhomAverage

sigma.range

range of sigma values to consider

phi.range

range of phi values to consider

spatial.covmodel

correlation type see ?CovarianceFct

covpars

vector of additional parameters for certain classes of covariance function (eg Matern), these must be supplied in the order given in ?CovarianceFct

guess

logical. Perform an initial guess at paramters? Alternative (the default) sets initial values in the middle of sigma.range and phi.range. NOTE: automatic parameter estimation can be can be unreliable.

Details

To get a good choice of parameters, it is likely that the routine will have to be called several times in order to refine the choice of sigma.range and phi.range.

Value

rpanel function to help choose sigma nad phi by eye

References

  1. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/

  2. Baddeley AJ, Moller J, Waagepetersen R (2000). Non-and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 54, 329-350.

  3. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  4. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

ginhomAverage, KinhomAverage, thetaEst, lambdaEst, muEst


SpatialPolygonsDataFrame.stapp function

Description

A function to return the SpatialPolygonsDataFrame part of an stapp object

Usage

SpatialPolygonsDataFrame.stapp(from)

Arguments

from

stapp object

Value

an object of class SpatialPolygonsDataFrame


SpikedExponentialCovFct function

Description

A function to declare and also evaluate a spiked exponential covariance function. Note that the present version of lgcp only offers estimation for sigma and phi, the additional parameter 'spikevar' is treated as fixed.

Usage

SpikedExponentialCovFct(d, CovParameters, spikevar = 1)

Arguments

d

toral distance

CovParameters

parameters of the latent field, an object of class "CovParamaters".

spikevar

the additional variance at distance 0

Value

the spiked exponential covariance function; note that the spikevariance is currently not estimated as part of the MCMC routine, and is thus treated as a fixed parameter.

See Also

CovFunction.function, exponentialCovFct, RandomFieldsCovFct


stapp function

Description

Generic function for space-time aggregated point-process data

Usage

stapp(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method stapp


stapp.list function

Description

A wrapper function for stapp.SpatialPolygonsDataFrame

Usage

## S3 method for class 'list'
stapp(obj, ...)

Arguments

obj

an list object as described above, see ?stapp.SpatialPolygonsDataFrame for further details on the requirements of the list

...

additional arguments

Details

Construct a space-time aggregated point-process (stapp) object from a list object. The first element of the list should be a SpatialPolygonsDataFrame, the second element of the list a counts matrix, the third element of the list a vector of times, the fourth element a vector giving the bounds of the temporal observation window and the fifth element a spatstat owin object giving the spatial observation window.

Value

an object of class stapp


stapp.SpatialPolygonsDataFrame function

Description

Construct a space-time aggregated point-process (stapp) object from a SpatialPolygonsDataFrame (along with some other info)

Usage

## S3 method for class 'SpatialPolygonsDataFrame'
stapp(obj, counts, t, tlim, window, ...)

Arguments

obj

an SpatialPolygonsDataFrame object

counts

a (length(t) by N) matrix containing aggregated case counts for each of the geographical regions defined by the SpatialPolygonsDataFrame, where N is the number of regions

t

vector of times, for each element of t there should correspond a column in the matrix 'counts'

tlim

vector giving the upper and lower bounds of the temporal observation window

window

the observation window, of class owin, see ?owin

...

additional arguments

Value

an object of class stapp


stGPrealisation function

Description

A function to store a realisation of a spatiotemporal gaussian process for use in MCMC algorithms that include Bayesian parameter estimation. Stores not only the realisation, but also computational quantities.

Usage

stGPrealisation(gamma, fftgrid, covFunction, covParameters, d, tdiff)

Arguments

gamma

the transformed (white noise) realisation of the process

fftgrid

an object of class FFTgrid, see ?genFFTgrid

covFunction

an object of class function returning the spatial covariance

covParameters

an object of class CovParamaters, see ?CovParamaters

d

matrix of grid distances

tdiff

vector of time differences

Value

a realisation of a spatiotemporal Gaussian process on a regular grid


stppp function

Description

Generic function used in the construction of space-time planar point patterns. An stppp object is like a ppp object, but with extra components for (1) a vector giving the time at whcih the event occurred and (2) a time-window over which observations occurred. Observations are assumed to occur in the plane and the observation window is assumed not to change over time.

Usage

stppp(P, ...)

Arguments

P

an object

...

additional arguments

Value

method stppp

See Also

stppp, stppp.ppp, stppp.list


stppp.list function

Description

Construct a space-time planar point pattern from a list object

Usage

## S3 method for class 'list'
stppp(P, ...)

Arguments

P

list object containing $data, an (n x 3) matrix corresponding to (x,y,t) values; $tlim, a vector of length 2 givign the observation time window; and $window giving an owin spatial observation winow, see ?owin for more details

...

additional arguments

Value

an object of class stppp

See Also

stppp, stppp.ppp,


stppp.ppp function

Description

Construct a space-time planar point pattern from a ppp object

Usage

## S3 method for class 'ppp'
stppp(P, t, tlim, ...)

Arguments

P

a spatstat ppp object

t

a vector of length P$n

tlim

a vector of length 2 specifying the observation time window

...

additional arguments

Value

an object of class stppp

See Also

stppp, stppp.list


summary.lgcpgrid function

Description

Summary method for lgcp objects. This just applies the summary function to each of the elements of object$grid.

Usage

## S3 method for class 'lgcpgrid'
summary(object, ...)

Arguments

object

an object of class lgcpgrid

...

other arguments

Value

Summary per grid, see ?summary for further options

See Also

lgcpgrid.list, lgcpgrid.array, as.list.lgcpgrid, print.lgcpgrid, quantile.lgcpgrid, image.lgcpgrid, plot.lgcpgrid


summary.mcmc function

Description

summary of an mcmc iterator print out values of an iterator and reset it. DONT call this in a loop that uses this iterator - it will reset it. And break.

Usage

## S3 method for class 'mcmc'
summary(object, ...)

Arguments

object

an mcmc iterator

...

other args


target.and.grad.AggregateSpatialPlusPars function

Description

A function to compute the target and gradient for the Bayesian aggregated point process model. Not for general use.

Usage

target.and.grad.AggregateSpatialPlusPars(
  GP,
  prior,
  Z,
  Zt,
  eta,
  beta,
  nis,
  cellarea,
  spatial,
  gradtrunc
)

Arguments

GP

an object constructed using GPrealisation

prior

the prior, created using lgcpPrior

Z

the design matrix on the full FFT grid

Zt

the transpose of the design matrix

eta

the model parameter, eta

beta

the model parameters, beta

nis

cell counts on the FFT grid

cellarea

the cell area

spatial

the poisson offset

gradtrunc

the gradient truncation parameter

Value

the target and gradient


target.and.grad.MultitypespatialPlusPars function

Description

A function to compute the taget an gradient for the Bayesian multivariate lgcp

Usage

target.and.grad.MultitypespatialPlusPars(
  GPlist,
  priorlist,
  Zlist,
  Ztlist,
  eta,
  beta,
  nis,
  cellarea,
  spatial,
  gradtrunc
)

Arguments

GPlist

list of Gaussian processes

priorlist

list of priors

Zlist

list of design matrices on the FFT gridd

Ztlist

list of transposed design matrices

eta

LGCP model parameter eta

beta

LGCP model parameter beta

nis

matrix of cell counts on the extended grid

cellarea

the cell area

spatial

the poisson offset interpolated onto the correcy grid

gradtrunc

gradient truncation paramter

Value

the target and gradient


target.and.grad.spatial function

Description

A function to compute the target and gradient for 'spatial only' MALA

Usage

target.and.grad.spatial(
  Gamma,
  nis,
  cellarea,
  rootQeigs,
  invrootQeigs,
  mu,
  spatial,
  logspat,
  scaleconst,
  gradtrunc
)

Arguments

Gamma

current state of the chain, Gamma

nis

matrix of cell counts

cellarea

area of cells, a positive number

rootQeigs

square root of the eigenvectors of the precision matrix

invrootQeigs

inverse square root of the eigenvectors of the precision matrix

mu

parameter of the latent Gaussian field

spatial

spatial at risk function, lambda, interpolated onto correct grid

logspat

log of spatial at risk function, lambda*scaleconst, interpolated onto correct grid

scaleconst

the expected number of cases

gradtrunc

gradient truncation parameter

Value

the back-transformed Y, its exponential, the log-target and gradient for use in MALAlgcpSpatial


target.and.grad.spatialPlusPars function

Description

A function to compute the target and gradient for the Bayesian spatial LGCP

Usage

target.and.grad.spatialPlusPars(
  GP,
  prior,
  Z,
  Zt,
  eta,
  beta,
  nis,
  cellarea,
  spatial,
  gradtrunc
)

Arguments

GP

an object created using GPrealisation

prior

the model priors, created using lgcpPrior

Z

the design matrix on the FFT grid

Zt

transpose of the design matrix

eta

the paramters, eta

beta

the parameters, beta

nis

cell counts on the FFT grid

cellarea

the cell area

spatial

poisson offset

gradtrunc

the gradient truncation parameter

Value

the target and graient for this model


target.and.grad.spatiotemporal function

Description

A function to compute the target and gradient for 'spatial only' MALA

Usage

target.and.grad.spatiotemporal(
  Gamma,
  nis,
  cellarea,
  rootQeigs,
  invrootQeigs,
  mu,
  spatial,
  logspat,
  temporal,
  bt,
  gt,
  gradtrunc
)

Arguments

Gamma

current state of the chain, Gamma

nis

matrix of cell counts

cellarea

area of cells, a positive number

rootQeigs

square root of the eigenvectors of the precision matrix

invrootQeigs

inverse square root of the eigenvectors of the precision matrix

mu

parameter of the latent Gaussian field

spatial

spatial at risk function, lambda, interpolated onto correct grid

logspat

log of spatial at risk function, lambda*scaleconst, interpolated onto correct grid

temporal

fitted temoporal values

bt

in Brix and Diggle vector b(delta t)

gt

in Brix and Diggle vector g(delta t) (ie the coefficient of R in G(t)), with convention that (deltat[1])=Inf

gradtrunc

gradient truncation parameter

Value

the back-transformed Y, its exponential, the log-target and gradient for use in MALAlgcp


target.and.grad.SpatioTemporalPlusPars function

Description

A function to compute the target and gradient for the Bayesian spatiotemporal LGCP.

Usage

target.and.grad.SpatioTemporalPlusPars(
  GP,
  prior,
  Z,
  Zt,
  eta,
  beta,
  nis,
  cellarea,
  spatial,
  gradtrunc,
  ETA0,
  tdiff
)

Arguments

GP

an object created using the stGPrealisation function

prior

the priors for hte model, created using lgcpPrior

Z

the design matrix on the FFT grid

Zt

the transpose of the design matrix

eta

the paramers eta

beta

the parameters beta

nis

the cell counts on the FFT grid

cellarea

the cell area

spatial

the poisson offset

gradtrunc

the gradient truncation parameter

ETA0

the initial value of eta

tdiff

vector of time differences between time points

Value

the target and gradient for the spatiotemporal model.


temporalAtRisk function

Description

Generic function used in the construction of temporalAtRisk objects. A temporalAtRisk object describes the at risk population globally in an observation time window [t_1,t_2]. Therefore, for any t in [t_1,t_2], a temporalAtRisk object should be able to return the global at risk population, mu(t) = E(number of cases in the unit time interval containing t). This is in contrast to the class of spatialAtRisk objects, which describe the spatial inhomogeneity in the population at risk, lambda(s).

Usage

temporalAtRisk(obj, ...)

Arguments

obj

an object

...

additional arguments

Details

Note that in the prediction routine, lgcpPredict, and the simulation routine, lgcpSim, time discretisation is achieved using as.integer on both observation times and time limits t_1 and t_2 (which may be stored as non-integer values). The functions that create temporalAtRisk objects therefore return piecewise cconstant step-functions. that can be evaluated for any real t in [t_1,t_2], but with the restriction that mu(t_i) = mu(t_j) whenever as.integer(t_i)==as.integer(t_j).

A temporalAtRisk object may be (1) 'assumed known', or (2) scaled to a particular dataset. In the latter case, in the routines available (temporalAtRisk.numeric and temporalAtRisk.function), the stppp dataset of interest should be referenced, in which case the scaling of mu(t) will be done automatically. Otherwise, for example for simulation purposes, no scaling of mu(t) occurs, and it is assumed that the mu(t) corresponds to the expected number of cases during the unit time interval containnig t. For reference purposes, the following is a mathematical description of a log-Gaussian Cox Process, it is best viewed in the pdf version of the manual.

Let Y(s,t)\mathcal Y(s,t) be a spatiotemporal Gaussian process, WR2W\subset R^2 be an observation window in space and TR0T\subset R_{\geq 0} be an interval of time of interest. Cases occur at spatio-temporal positions (x,t)W×T(x,t) \in W \times T according to an inhomogeneous spatio-temporal Cox process, i.e. a Poisson process with a stochastic intensity R(x,t)R(x,t), The number of cases, XS,[t1,t2]X_{S,[t_1,t_2]}, arising in any SWS \subseteq W during the interval [t1,t2]T[t_1,t_2]\subseteq T is then Poisson distributed conditional on R()R(\cdot),

XS,[t1,t2]Poisson{St1t2R(s,t)dsdt}X_{S,[t_1,t_2]} \sim \mbox{Poisson}\left\{\int_S\int_{t_1}^{t_2} R(s,t)d sd t\right\}

Following Brix and Diggle (2001) and Diggle et al (2005), the intensity is decomposed multiplicatively as

R(s,t)=λ(s)μ(t)exp{Y(s,t)}.R(s,t) = \lambda(s)\mu(t)\exp\{\mathcal Y(s,t)\}.

In the above, the fixed spatial component, λ:R2R0\lambda:R^2\mapsto R_{\geq 0}, is a known function, proportional to the population at risk at each point in space and scaled so that

Wλ(s)ds=1,\int_W\lambda(s)d s=1,

whilst the fixed temporal component, μ:R0R0\mu:R_{\geq 0}\mapsto R_{\geq 0}, is also a known function with

μ(t)δt=E[XW,δt],\mu(t) \delta t = E[X_{W,\delta t}],

for tt in a small interval of time, δt\delta t, over which the rate of the process over WW can be considered constant.

Value

method temporalAtRisk

  1. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  2. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

spatialAtRisk, lgcpPredict, lgcpSim, temporalAtRisk.numeric, temporalAtRisk.function, constantInTime, constantInTime.numeric, constantInTime.stppp, print.temporalAtRisk, plot.temporalAtRisk


temporalAtRisk.function function

Description

Create a temporalAtRisk object from a function.

Usage

## S3 method for class ''function''
temporalAtRisk(obj, tlim, xyt = NULL, warn = TRUE, ...)

Arguments

obj

a function accepting single, scalar, numeric argument, t, that returns the temporal intensity for time t

tlim

an integer vector of length 2 giving the time limits of the observation window

xyt

an object of class stppp. If NULL (default) then the function returned is not scaled. Otherwise, the function is scaled so that f(t) = expected number of counts at time t.

warn

Issue a warning if the given temporal intensity treated is treated as 'known'?

...

additional arguments

Details

Note that in the prediction routine, lgcpPredict, and the simulation routine, lgcpSim, time discretisation is achieved using as.integer on both observation times and time limits t_1 and t_2 (which may be stored as non-integer values). The functions that create temporalAtRisk objects therefore return piecewise cconstant step-functions. that can be evaluated for any real t in [t_1,t_2], but with the restriction that mu(t_i) = mu(t_j) whenever as.integer(t_i)==as.integer(t_j).

A temporalAtRisk object may be (1) 'assumed known', corresponding to the default argument xyt=NULL; or (2) scaled to a particular dataset (argument xyt=[stppp object of interest]). In the latter case, in the routines available (temporalAtRisk.numeric and temporalAtRisk.function), the dataset of interest should be referenced, in which case the scaling of mu(t) will be done automatically. Otherwise, for example for simulation purposes, no scaling of mu(t) occurs, and it is assumed that the mu(t) corresponds to the expected number of cases during the unit time interval containnig t.

Value

a function f(t) giving the temporal intensity at time t for integer t in the interval [tlim[1],tlim[2]] of class temporalAtRisk

  1. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  2. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

temporalAtRisk, spatialAtRisk, temporalAtRisk.numeric, constantInTime, constantInTime.numeric, constantInTime.stppp, print.temporalAtRisk, plot.temporalAtRisk


temporalAtRisk.numeric function

Description

Create a temporalAtRisk object from a numeric vector.

Usage

## S3 method for class 'numeric'
temporalAtRisk(obj, tlim, xyt = NULL, warn = TRUE, ...)

Arguments

obj

a numeric vector of length (tlim[2]-tlim[1] + 1) giving the temporal intensity up to a constant of proportionality at each integer time within the interval defined by tlim

tlim

an integer vector of length 2 giving the time limits of the observation window

xyt

an object of class stppp. If NULL (default) then the function returned is not scaled. Otherwise, the function is scaled so that f(t) = expected number of counts at time t.

warn

Issue a warning if the given temporal intensity treated is treated as 'known'?

...

additional arguments

Details

Note that in the prediction routine, lgcpPredict, and the simulation routine, lgcpSim, time discretisation is achieved using as.integer on both observation times and time limits t_1 and t_2 (which may be stored as non-integer values). The functions that create temporalAtRisk objects therefore return piecewise constant step-functions that can be evaluated for any real t in [t_1,t_2], but with the restriction that mu(t_i) = mu(t_j) whenever as.integer(t_i)==as.integer(t_j).

A temporalAtRisk object may be (1) 'assumed known', corresponding to the default argument xyt=NULL; or (2) scaled to a particular dataset (argument xyt=[stppp object of interest]). In the latter case, in the routines available (temporalAtRisk.numeric and temporalAtRisk.function), the dataset of interest should be referenced, in which case the scaling of mu(t) will be done automatically. Otherwise, for example for simulation purposes, no scaling of mu(t) occurs, and it is assumed that the mu(t) corresponds to the expected number of cases during the unit time interval containing t.

Value

a function f(t) giving the temporal intensity at time t for integer t in the interval as.integer([tlim[1],tlim[2]]) of class temporalAtRisk

  1. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  2. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

temporalAtRisk, spatialAtRisk, temporalAtRisk.function, constantInTime, constantInTime.numeric, constantInTime.stppp, print.temporalAtRisk, plot.temporalAtRisk


tempRaster function

Description

A function to create a temporary raster object from an x-y regular grid of cell centroids. Useful for projection from one raster to another.

Usage

tempRaster(mcens, ncens)

Arguments

mcens

vector of equally-spaced coordinates of cell centroids in x-direction

ncens

vector of equally-spaced coordinates of cell centroids in y-direction

Value

an empty raster object


textsummary function

Description

A function to print a text description of the inferred paramerers beta and eta from a call to the function lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars or lgcpPredictMultitypeSpatialPlusPars

Usage

textsummary(obj, digits = 3, scientific = -3, inclIntercept = FALSE, ...)

Arguments

obj

an object produced by a call to lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars orlgcpPredictMultitypeSpatialPlusPars

digits

see the option "digits" in ?format

scientific

see the option "scientific" in ?format

inclIntercept

logical: whether to summarise the intercept term, default is FALSE.

...

other arguments passed to the function "format"

Value

A text summary, that can be pasted into a LaTeX document and later edited.

See Also

ltar, autocorr, parautocorr, traceplots, parsummary, priorpost, postcov, exceedProbs, betavals, etavals


thetaEst function

Description

A tool to visually estimate the temporal correlation parameter theta; note that sigma and phi must have first been estiamted.

Usage

thetaEst(
  xyt,
  spatial.intensity = NULL,
  temporal.intensity = NULL,
  sigma,
  phi,
  theta.range = c(0, 10),
  N = 100,
  spatial.covmodel = "exponential",
  covpars = c()
)

Arguments

xyt

object of class stppp

spatial.intensity

A spatial at risk object OR a bivariate density estimate of lambda, an object of class im (produced from density.ppp for example),

temporal.intensity

either an object of class temporalAtRisk, or one that can be coerced into that form. If NULL (default), this is estimated from the data, seee ?muEst

sigma

estimate of parameter sigma

phi

estimate of parameter phi

theta.range

range of theta values to consider

N

number of integration points in computation of C(v,beta) (see Brix and Diggle 2003, corrigendum to Brix and Diggle 2001)

spatial.covmodel

spatial covariance model

covpars

additional covariance parameters

Value

An r panel tool for visual estimation of temporal parameter theta NOTE if lambdaEst has been invoked to estimate lambda, then the returned density should be passed to thetaEst as the argument spatial.intensity

References

  1. Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/

  2. Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.

  3. Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.

See Also

ginhomAverage, KinhomAverage, spatialparsEst, lambdaEst, muEst


toral.cov.mat function

Description

A function to compute the covariance matrix of a stationary process on a torus.

Usage

toral.cov.mat(xg, yg, sigma, phi, model, additionalparameters)

Arguments

xg

x grid

yg

y grid

sigma

spatial variability parameter

phi

spatial decay parameter

model

model for covariance, see ?CovarianceFct

additionalparameters

additional parameters for covariance structure

Value

circulant covariacne matrix


touchingowin function

Description

A function to compute which cells are touching an owin or spatial polygons object

Usage

touchingowin(x, y, w)

Arguments

x

grid centroids in x-direction note this will be expanded into a GRID of (x,y) values in the function

y

grid centroids in y-direction note this will be expanded into a GRID of (x,y) values in the function

w

an owin or SpatialPolygons object

Value

vector of TRUE or FALSE according to whether the cell


traceplots function

Description

A function to produce trace plots for the paramerers beta and eta from a call to the function lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars or lgcpPredictMultitypeSpatialPlusPars

Usage

traceplots(obj, xlab = "Sample No.", ylab = NULL, main = "", ask = TRUE, ...)

Arguments

obj

an object produced by a call to lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars orlgcpPredictMultitypeSpatialPlusPars

xlab

optional label for x-axis, there is a sensible default.

ylab

optional label for y-axis, there is a sensible default.

main

optional title of the plot, there is a sensible default.

ask

the paramter "ask", see ?par

...

other arguments passed to the function "hist"

Value

produces MCMC trace plots of the parameters beta and eta

See Also

ltar, autocorr, parautocorr, parsummary, textsummary, priorpost, postcov, exceedProbs, betavals, etavals


transblack function

Description

A function to return a transparent black colour.

Usage

transblack(alpha = 0.1)

Arguments

alpha

transparency parameter, see ?rgb

Value

character string of colour


transblue function

Description

A function to return a transparent blue colour.

Usage

transblue(alpha = 0.1)

Arguments

alpha

transparency parameter, see ?rgb

Value

character string of colour


transgreen function

Description

A function to return a transparent green colour.

Usage

transgreen(alpha = 0.1)

Arguments

alpha

transparency parameter, see ?rgb

Value

character string of colour


transred function

Description

A function to return a transparent red colour.

Usage

transred(alpha = 0.1)

Arguments

alpha

transparency parameter, see ?rgb

Value

character string of colour


A text progress bar with label

Description

This is the base txtProgressBar but with a little modification to implement the label parameter for style=3. For full info see txtProgressBar

Usage

txtProgressBar2(
  min = 0,
  max = 1,
  initial = 0,
  char = "=",
  width = NA,
  title = "",
  label = "",
  style = 1
)

Arguments

min

min value for bar

max

max value for bar

initial

initial value for bar

char

the character (or character string) to form the progress bar.

width

progress bar width

title

ignored

label

text to put at the end of the bar

style

bar style


updateAMCMC function

Description

A generic to be used for the purpose of user-defined adaptive MCMC schemes, updateAMCMC tells the MALA algorithm how to update the value of h. See lgcp vignette, codevignette("lgcp"), for further details on writing adaptive MCMC schemes.

Usage

updateAMCMC(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method updateAMCMC

See Also

updateAMCMC.constanth, updateAMCMC.andrieuthomsh


updateAMCMC.andrieuthomsh function

Description

Updates the andrieuthomsh adaptive scheme.

Usage

## S3 method for class 'andrieuthomsh'
updateAMCMC(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

update and return current h for scheme

References

  1. Andrieu C, Thoms J (2008). A tutorial on adaptive MCMC. Statistics and Computing, 18(4), 343-373.

  2. Robbins H, Munro S (1951). A Stochastic Approximation Methods. The Annals of Mathematical Statistics, 22(3), 400-407.

  3. Roberts G, Rosenthal J (2001). Optimal Scaling for Various Metropolis-Hastings Algorithms. Statistical Science, 16(4), 351-367.

See Also

andrieuthomsh


updateAMCMC.constanth function

Description

Updates the constanth adaptive scheme.

Usage

## S3 method for class 'constanth'
updateAMCMC(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

update and return current h for scheme

See Also

constanth


varfield function

Description

Generic function to extract the variance of the latent field Y.

Usage

varfield(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

method meanfield

See Also

lgcpPredict


varfield.lgcpPredict function

Description

This is an accessor function for objects of class lgcpPredict and returns the variance of the field Y as an lgcpgrid object.

Usage

## S3 method for class 'lgcpPredict'
varfield(obj, ...)

Arguments

obj

an object of class lgcpPredict

...

additional arguments

Value

returns the cell-wise variance of Y computed via Monte Carlo.

See Also

lgcpPredict


varfield.lgcpPredictINLA function

Description

A function to return the variance of the latent field from a call to lgcpPredictINLA output.

Usage

## S3 method for class 'lgcpPredictINLA'
varfield(obj, ...)

Arguments

obj

an object of class lgcpPredictINLA

...

other arguments

Value

the variance of the latent field


window.lgcpPredict function

Description

Accessor function returning the observation window from objects of class lgcpPredict. Note that for computational purposes, the window of an stppp object will be extended to accommodate the requirement that the dimensions must be powers of 2. The function window.lgcpPredict returns the extended window.

Usage

## S3 method for class 'lgcpPredict'
window(x, ...)

Arguments

x

an object of class lgcpPredict

...

additional arguments

Value

returns the observation window used durign computation

See Also

lgcpPredict


Population of Welsh counties

Description

Population of Welsh counties

Usage

data(wpopdata)

Format

matrix

Source

ONS

References

http://www.statistics.gov.uk/default.asp


Welsh town details: location

Description

Welsh town details: location

Usage

data(wtowncoords)

Format

matrix

Source

Wikipedia

References

https://www.wikipedia.org/


Welsh town details: population

Description

Welsh town details: population

Usage

data(wtowns)

Format

matrix

Source

ONS

References

http://www.statistics.gov.uk/default.asp


xvals function

Description

Generic for extractign the 'x values' from an object.

Usage

xvals(obj, ...)

Arguments

obj

an object of class spatialAtRisk

...

additional arguments

Value

the xvals method

See Also

yvals, zvals, xvals.default, yvals.default, zvals.default, xvals.fromXYZ, yvals.fromXYZ, zvals.fromXYZ, xvals.SpatialGridDataFrame, yvals.SpatialGridDataFrame, zvals.SpatialGridDataFrame


xvals.default function

Description

Default method for extracting 'x values' looks for $X, $x in that order.

Usage

## Default S3 method:
xvals(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

the x values

See Also

xvals, yvals, zvals, yvals.default, zvals.default, xvals.fromXYZ, yvals.fromXYZ, zvals.fromXYZ, xvals.SpatialGridDataFrame, yvals.SpatialGridDataFrame, zvals.SpatialGridDataFrame


xvals.fromXYZ function

Description

Method for extracting 'x values' from an object of class fromXYZ

Usage

## S3 method for class 'fromXYZ'
xvals(obj, ...)

Arguments

obj

a spatialAtRisk object

...

additional arguments

Value

the x values

See Also

xvals, yvals, zvals, xvals.default, yvals.default, zvals.default, yvals.fromXYZ, zvals.fromXYZ, xvals.SpatialGridDataFrame, yvals.SpatialGridDataFrame, zvals.SpatialGridDataFrame


xvals.lgcpPredict function

Description

Gets the x-coordinates of the centroids of the prediction grid.

Usage

## S3 method for class 'lgcpPredict'
xvals(obj, ...)

Arguments

obj

an object of class lgcpPredict

...

additional arguments

Value

the x coordinates of the centroids of the grid

See Also

lgcpPredict


xvals.SpatialGridDataFrame function

Description

Method for extracting 'x values' from an object of class spatialGridDataFrame

Usage

## S3 method for class 'SpatialGridDataFrame'
xvals(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

the x values

See Also

xvals, yvals, zvals, xvals.default, yvals.default, zvals.default, xvals.fromXYZ, yvals.fromXYZ, zvals.fromXYZ, yvals.SpatialGridDataFrame, zvals.SpatialGridDataFrame


YfromGamma function

Description

A function to change Gammas (white noise) into Ys (spatially correlated noise). Used in the MALA algorithm.

Usage

YfromGamma(Gamma, invrootQeigs, mu)

Arguments

Gamma

Gamma matrix

invrootQeigs

inverse square root of the eigenvectors of the precision matrix

mu

parameter of the latent Gaussian field

Value

Y


yvals function

Description

Generic for extractign the 'y values' from an object.

Usage

yvals(obj, ...)

Arguments

obj

an object of class spatialAtRisk

...

additional arguments

Value

the yvals method

See Also

xvals, zvals, xvals.default, yvals.default, zvals.default, xvals.fromXYZ, yvals.fromXYZ, zvals.fromXYZ, xvals.SpatialGridDataFrame, yvals.SpatialGridDataFrame, zvals.SpatialGridDataFrame


yvals.default function

Description

Default method for extracting 'y values' looks for $Y, $y in that order.

Usage

## Default S3 method:
yvals(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

the y values

See Also

xvals, yvals, zvals, xvals.default, zvals.default, xvals.fromXYZ, yvals.fromXYZ, zvals.fromXYZ, xvals.SpatialGridDataFrame, yvals.SpatialGridDataFrame, zvals.SpatialGridDataFrame


yvals.fromXYZ function

Description

Method for extracting 'y values' from an object of class fromXYZ

Usage

## S3 method for class 'fromXYZ'
yvals(obj, ...)

Arguments

obj

a spatialAtRisk object

...

additional arguments

Value

the y values

See Also

xvals, yvals, zvals, xvals.default, yvals.default, zvals.default, xvals.fromXYZ, zvals.fromXYZ, xvals.SpatialGridDataFrame, yvals.SpatialGridDataFrame, zvals.SpatialGridDataFrame


yvals.lgcpPredict function

Description

Gets the y-coordinates of the centroids of the prediction grid.

Usage

## S3 method for class 'lgcpPredict'
yvals(obj, ...)

Arguments

obj

an object of class lgcpPredict

...

additional arguments

Value

the y coordinates of the centroids of the grid

See Also

lgcpPredict


yvals.SpatialGridDataFrame function

Description

Method for extracting 'y values' from an object of class SpatialGridDataFrame

Usage

## S3 method for class 'SpatialGridDataFrame'
yvals(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

the y values

See Also

xvals, yvals, zvals, xvals.default, yvals.default, zvals.default, xvals.fromXYZ, yvals.fromXYZ, zvals.fromXYZ, xvals.SpatialGridDataFrame, zvals.SpatialGridDataFrame


zvals function

Description

Generic for extractign the 'z values' from an object.

Usage

zvals(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

the zvals method

See Also

xvals, yvals, xvals.default, yvals.default, zvals.default, xvals.fromXYZ, yvals.fromXYZ, zvals.fromXYZ, xvals.SpatialGridDataFrame, yvals.SpatialGridDataFrame, zvals.SpatialGridDataFrame


zvals.default function

Description

Default method for extracting 'z values' looks for $Zm, $Z, $z in that order.

Usage

## Default S3 method:
zvals(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

the x values

See Also

xvals, yvals, zvals, xvals.default, yvals.default, xvals.fromXYZ, yvals.fromXYZ, zvals.fromXYZ, xvals.SpatialGridDataFrame, yvals.SpatialGridDataFrame, zvals.SpatialGridDataFrame


zvals.fromXYZ function

Description

Method for extracting 'z values' from an object of class fromXYZ

Usage

## S3 method for class 'fromXYZ'
zvals(obj, ...)

Arguments

obj

a spatialAtRisk object

...

additional arguments

Value

the z values

See Also

xvals, yvals, zvals, xvals.default, yvals.default, zvals.default, xvals.fromXYZ, yvals.fromXYZ, xvals.SpatialGridDataFrame, yvals.SpatialGridDataFrame, zvals.SpatialGridDataFrame


zvals.SpatialGridDataFrame function

Description

Method for extracting 'z values' from an object of class SpatialGridDataFrame

Usage

## S3 method for class 'SpatialGridDataFrame'
zvals(obj, ...)

Arguments

obj

an object

...

additional arguments

Value

the z values

See Also

xvals, yvals, zvals, xvals.default, yvals.default, zvals.default, xvals.fromXYZ, yvals.fromXYZ, zvals.fromXYZ, xvals.SpatialGridDataFrame, yvals.SpatialGridDataFrame