Package: deepNN 1.2

deepNN: Deep Learning

Implementation of some Deep Learning methods. Includes multilayer perceptron, different activation functions, regularisation strategies, stochastic gradient descent and dropout. Thanks go to the following references for helping to inspire and develop the package: Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach (2016, ISBN:978-0262035613) Deep Learning. Terrence J. Sejnowski (2018, ISBN:978-0262038034) The Deep Learning Revolution. Grant Sanderson (3brown1blue) <https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi> Neural Networks YouTube playlist. Michael A. Nielsen <http://neuralnetworksanddeeplearning.com/> Neural Networks and Deep Learning.

Authors:Benjamin Taylor [aut, cre]

deepNN_1.2.tar.gz
deepNN_1.2.zip(r-4.5)deepNN_1.2.zip(r-4.4)deepNN_1.2.zip(r-4.3)
deepNN_1.2.tgz(r-4.5-any)deepNN_1.2.tgz(r-4.4-any)deepNN_1.2.tgz(r-4.3-any)
deepNN_1.2.tar.gz(r-4.5-noble)deepNN_1.2.tar.gz(r-4.4-noble)
deepNN_1.2.tgz(r-4.4-emscripten)deepNN_1.2.tgz(r-4.3-emscripten)
deepNN.pdf |deepNN.html
deepNN/json (API)

# Install 'deepNN' in R:
install.packages('deepNN', repos = c('https://bentaylor1.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.34 score 22 scripts 224 downloads 22 exports 2 dependencies

Last updated 2 years agofrom:424b1fb71c. Checks:3 OK, 6 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 24 2025
R-4.5-winNOTEMar 24 2025
R-4.5-macNOTEMar 24 2025
R-4.5-linuxNOTEMar 24 2025
R-4.4-winNOTEMar 24 2025
R-4.4-macNOTEMar 24 2025
R-4.4-linuxNOTEMar 24 2025
R-4.3-winOKMar 24 2025
R-4.3-macOKMar 24 2025

Exports:download_mnistdropoutProbshyptanidentL1_regularisationL2_regularisationlogisticmultinomialnbiasparnetworknnetparNNgrad_testNNpredictNNpredict.regressionno_regularisationQlossReLUsmoothReLUsoftmaxtrainwmultinomialwQloss

Dependencies:latticeMatrix