Package: deepNN 1.2

deepNN: Deep Learning

Implementation of some Deep Learning methods. Includes multilayer perceptron, different activation functions, regularisation strategies, stochastic gradient descent and dropout. Thanks go to the following references for helping to inspire and develop the package: Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach (2016, ISBN:978-0262035613) Deep Learning. Terrence J. Sejnowski (2018, ISBN:978-0262038034) The Deep Learning Revolution. Grant Sanderson (3brown1blue) <https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi> Neural Networks YouTube playlist. Michael A. Nielsen <http://neuralnetworksanddeeplearning.com/> Neural Networks and Deep Learning.

Authors:Benjamin Taylor [aut, cre]

deepNN_1.2.tar.gz
deepNN_1.2.zip(r-4.5)deepNN_1.2.zip(r-4.4)deepNN_1.2.zip(r-4.3)
deepNN_1.2.tgz(r-4.4-any)deepNN_1.2.tgz(r-4.3-any)
deepNN_1.2.tar.gz(r-4.5-noble)deepNN_1.2.tar.gz(r-4.4-noble)
deepNN_1.2.tgz(r-4.4-emscripten)deepNN_1.2.tgz(r-4.3-emscripten)
deepNN.pdf |deepNN.html
deepNN/json (API)

# Install 'deepNN' in R:
install.packages('deepNN', repos = c('https://bentaylor1.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.34 score 22 scripts 224 downloads 22 exports 2 dependencies

Last updated 1 years agofrom:424b1fb71c. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 25 2024
R-4.5-winNOTEOct 25 2024
R-4.5-linuxNOTEOct 25 2024
R-4.4-winNOTEOct 25 2024
R-4.4-macNOTEOct 25 2024
R-4.3-winOKOct 25 2024
R-4.3-macOKOct 25 2024

Exports:download_mnistdropoutProbshyptanidentL1_regularisationL2_regularisationlogisticmultinomialnbiasparnetworknnetparNNgrad_testNNpredictNNpredict.regressionno_regularisationQlossReLUsmoothReLUsoftmaxtrainwmultinomialwQloss

Dependencies:latticeMatrix