Package: deepNN 1.2

deepNN: Deep Learning

Implementation of some Deep Learning methods. Includes multilayer perceptron, different activation functions, regularisation strategies, stochastic gradient descent and dropout. Thanks go to the following references for helping to inspire and develop the package: Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach (2016, ISBN:978-0262035613) Deep Learning. Terrence J. Sejnowski (2018, ISBN:978-0262038034) The Deep Learning Revolution. Grant Sanderson (3brown1blue) <https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi> Neural Networks YouTube playlist. Michael A. Nielsen <http://neuralnetworksanddeeplearning.com/> Neural Networks and Deep Learning.

Authors:Benjamin Taylor [aut, cre]

deepNN_1.2.tar.gz
deepNN_1.2.zip(r-4.5)deepNN_1.2.zip(r-4.4)deepNN_1.2.zip(r-4.3)
deepNN_1.2.tgz(r-4.4-any)deepNN_1.2.tgz(r-4.3-any)
deepNN_1.2.tar.gz(r-4.5-noble)deepNN_1.2.tar.gz(r-4.4-noble)
deepNN_1.2.tgz(r-4.4-emscripten)deepNN_1.2.tgz(r-4.3-emscripten)
deepNN.pdf |deepNN.html
deepNN/json (API)

# Install 'deepNN' in R:
install.packages('deepNN', repos = c('https://bentaylor1.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.34 score 22 scripts 256 downloads 22 exports 2 dependencies

Last updated 1 years agofrom:424b1fb71c. Checks:3 OK, 4 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 23 2025
R-4.5-winNOTEJan 23 2025
R-4.5-linuxNOTEJan 23 2025
R-4.4-winNOTEJan 23 2025
R-4.4-macNOTEJan 23 2025
R-4.3-winOKJan 23 2025
R-4.3-macOKJan 23 2025

Exports:download_mnistdropoutProbshyptanidentL1_regularisationL2_regularisationlogisticmultinomialnbiasparnetworknnetparNNgrad_testNNpredictNNpredict.regressionno_regularisationQlossReLUsmoothReLUsoftmaxtrainwmultinomialwQloss

Dependencies:latticeMatrix